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Abstract
Background  Evolution continues to be one of the most difficult biological topics to teach, warranting innovative 
pedagogical tools and assessment strategies for enhancing evolutionary instruction. A major advance in measuring 
the evolution knowledge of undergraduate students came with the development of the Conceptual Assessment of 
Natural Selections (CANS). In this study, we use the CANS to measure knowledge and learning of natural selection 
in a large (N > 6000) sample of undergraduate students to expand upon prior validity testing of this instrument and 
advance knowledge of student evolutionary reasoning. We apply the Rasch measurement framework to examine 
if the CANS productively measures the intended construct and investigate the patterns of knowledge and learning 
about evolution among students with different backgrounds and demographic characteristics.

Results  While a unidimensional Rasch model demonstrated acceptable reliabilities and fit for most of the CANS 
items, some items showed problematic fit statistics and were resistant to instruction. The instrument items also did 
not span the full range of student abilities, which suggests relatively low measurement precision. Our large sample 
also allowed rigorous tests of multidimensionality, revealing the presence of multiple dimensions or constructs, some 
of which may not be intentional. These results generated specific item-level recommendations for improving this 
instrument. Using Rasch measures to examine learning patterns, we found that pre-test evolution knowledge was low 
but that there were high learning gains by the end of the course. However, some concept categories were found to 
be more difficult than others, suggesting the need for more attention to these areas by instructors. We also identified 
pre-test disparities in evolutionary knowledge by socially defined race and biological sex, yet students from all groups 
achieved comparable learning gains at the end of the course.

Conclusion  The CANS holds great potential to generate critical insights about student evolutionary reasoning 
and provide information about which instructional approaches most effectively mitigate the notable knowledge 
disparities among students. We leverage the findings of this study to propose tangible ways in which this instrument 
may be improved in order to better achieve both of these goals.
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Background
Evolution has been recognized as one of the core disci-
plinary ideas needed to understand the complexities of 
biological systems at multiple scales and has been identi-
fied as a central component of scientific literacy (AAAS 
2011). This recognition has promoted the inclusion of 
evolution as a foundational concept within biology cur-
ricula at both the K-12 (NGSS Lead States 2013) and 
higher education levels (AAAS 2011). However, evolu-
tion is one of the most difficult biological topics to teach 
in part because it is rife with misconceptions that persist 
even after instruction (Bishop and Anderson 1990; Nehm 
and Reilly 2007; Andrews et al. 2011). Misconceptions 
about evolution have been documented across a variety 
of educational stages, including among secondary school 
students (Demastes et al. 1995), undergraduate students 
(e.g. Abraham et al. 2009; Andrews et al. 2011; Greg-
ory 2009; Nehm and Reilly 2007; Petto and Mead 2008; 
Phillips et al. 2012), and practicing teachers (Nehm and 
Schonfeld 2007; Ziadie and Andrews 2018). Therefore, 
there is an urgent need for innovative pedagogical tools 
and assessment strategies for enhancing evolutionary 
instruction. A necessary step toward improving evolution 
education is the implementation of robust assessment 
tools that can effectively measure the progression toward 
learning outcomes and proficiency in this core disciplin-
ary idea (Ziadie and Andrews 2018). However, the devel-
opment of such tools remains a major challenge (Nehm 
and Mead 2019).

One of the most important topics within the domain of 
evolution is natural selection. In natural selection, heri-
table genotypic variants arise from random mutations 
and encode phenotypes that may confer an advantage 
in the environment, causing their frequency to increase 
in a population over time (Speth et al. 2014). As such, 
there are considered to be three core concepts of natu-
ral selection: variation, heredity, and differential sur-
vival and reproduction (Nehm et al. 2012). In spite of 
the longstanding challenges associated with monitoring 
and improving student understanding of natural selec-
tion, a major advance in measuring evolution knowledge 
in undergraduates came with the development of two 
easy-to-administer concept inventories: The Concep-
tual Inventory of Natural Selection (CINS) (Anderson 
et al. 2002) and the Conceptual Assessment of Natural 
Selections (CANS) (Kalinowski et al. 2016). Both instru-
ments are closed response assessments with misconcep-
tion distractors. The CANS was developed to improve 
upon several weaknesses of the CINS. In particular, the 
CANS addresses more misconceptions than the CINS 
and assesses evolution knowledge across multiple bio-
logical phenomena (e.g., trait gain in plants vs. trait loss 
in animals) using a variety of item forms (Kalinowski et 
al. 2016).

Student reasoning has been found to be impacted by 
the specific features of an evolutionary phenomenon. The 
authors of the CANS purposely included various features 
within the CANS in order to more effectively tap into the 
way that students reason about evolution. For example, 
students’ evolutionary explanations frequently differ 
depending on whether the features of the phenomenon 
involve the gain vs. loss of a trait within an animal vs. 
plant taxon (e.g., Nehm and Ha 2011). However, evolu-
tion works the same way regardless of the trait’s polarity 
or the taxon in which it occurs and thus does not neces-
sitate different evolutionary explanations for phenomena 
with these features. This example demonstrates a funda-
mental distinction between novices and experts: novice 
reasoning tends to be fragmented across phenomena 
whereas expert reasoning tends to be coherent across 
phenomena (Kampourakis and Zogza 2008; Opfer et al. 
2012). The degree of coherence or fragmentation across 
phenomena speaks to the structure of knowledge. Evi-
dence indicates that it is more difficult to increase a stu-
dent’s coherence than it is to increase the magnitude of 
their knowledge (Colton et al. 2018, 2019).

A fundamental step in the development and evaluation 
of assessment tools is the gathering of various sources 
of evidence to support the validity of the interpretations 
made from instrument derived data (American Edu-
cational Research Association 2014). These sources of 
validity evidence allow the determination of how well an 
instrument measures what it intends to measure. There 
are many different conceptual frameworks for guiding 
the sources of evidence that must be gathered (AERA, 
2014). Here, we adopt a construct validity framework, 
which includes a combination of several categories of 
evidence to support inferences about the predicted con-
structs (Messick 1995; Campbell and Nehm 2013; AERA, 
2014). It is infeasible to capture the full range of evidence 
needed to establish construct validity from a single study 
and several gaps in validity evidence exist for the CANS. 
Furthermore, several of the existing validity findings 
are inconclusive, in part due to small sample sizes, and 
thus warrant further study. The purpose of this study is 
to address the limitations in existing validity evidence 
for this instrument in order to advance understanding 
of student reasoning about natural selection. Below, we 
describe the research aims and questions that guide this 
study. We then describe the five primary sources of valid-
ity evidence within the construct validity measurement 
framework and summarize the existing evidence for the 
CANS.

Research aims and questions
In this study, we use the 24-item CANS to measure stu-
dent learning of natural selection in a large (N > 6000) 
sample of undergraduate students enrolled in a gateway 
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biology course in order to expand upon prior validity 
testing of this instrument and advance knowledge of stu-
dent evolutionary reasoning. Our study advances prior 
work by (1) investigating and broadening internal struc-
ture validity and generalization validity for the CANS, (2) 
including data from a significantly larger sample span-
ning 14 semesters, which allows both rigorous tests of 
multidimensionality as well as the replication of findings 
through time, (3) adopting a more stringent IRT model 
(Rasch model) as our paradigm of productive measure-
ment, (4) including item level analysis to identify, inter-
rogate, and propose solutions for problematic items, (5) 
evaluating the suitability of the instrument to effectively 
tap into student reasoning, and (6) incorporating student 
background and demographic variables into analyses of 
student evolution learning using this instrument. We 
divide this work into two parts, each with a correspond-
ing set of research questions.

In part 1, we investigate whether the CANS produc-
tively measures the intended construct by assessing 
whether the instrument-derived data adhere to well-
accepted criteria of robust measurement. Our criteria of 
robust measurement follow the Rasch model, which the-
orizes that certain characteristics of the underlying data 
must be present in order to generate robust measures of 
a latent construct (Boone 2016; Boone et al. 2014; Bors-
boom et al. 2003). More information about each of these 
criteria is provided in the Methods. The research ques-
tions are as follows: (RQ1.1) Do items that comprise the 
CANS display acceptable fit to the expectations of the 
Rasch model? (RQ 1.2) Does the CANS reliably order 
items by their difficulties and respondents by their abili-
ties on the latent trait? (RQ1.3) To what extent does the 
CANS precisely measure the latent trait? (RQ 1.4) Is the 
structure of the CANS best characterized as unidimen-
sional or multidimensional?

In part 2, we investigate the patterns of knowledge and 
learning about evolution as measured by the CANS. The 
research questions for this section are as follows: (RQ 
2.1) What are the magnitudes of evolution knowledge 
and learning gains across 14 semesters of a high-enroll-
ment gateway biology course? (RQ 2.2) How variable are 
CANS measures across semesters? (RQ 2.3) How variable 
are CANS measures across different student background 
characteristics? (RQ 2.4) Which evolution topics within 
the CANS are most difficult for students? (RQ 2.5) What 
is the structure (i.e., coherent vs. fragmented) of student 
evolutionary knowledge across phenomena?

Current validity evidence for the CANS
Within construct validity, the sources of validity evi-
dence include: (i) test content (i.e., content validity), 
(ii) response processes (i.e., substantive validity), (iii) 
relationships to other variables (i.e., convergent and/or 

discriminant validity); (iv) internal structure (i.e., inter-
nal structure validity); and (v) validity generalization 
(i.e., generalization validity). Content validity refers to 
whether the instrument includes all parts of the intended 
construct and no irrelevant topics (AERA, 2014). The 
authors of the CANS specified the content domain of 
natural selection to include five concept categories– 
mutation, inheritance, selection, variation, and evolution. 
The fifth concept, evolution, was designed to assess stu-
dent understanding of the interaction among the other 
core topics (Kalinowski et al. 2016). Expert interviews 
were used to support the relevance of the items to these 
subtopics (Kalinowski et al. 2016).

Substantive validity refers to whether respondents 
engage in the expected cognitive processes when answer-
ing instrument items (AERA, 2014). To address this 
source of validity evidence, the authors of the CANS con-
ducted interviews with students and concluded that stu-
dents interpreted the items as intended (Kalinowski et al. 
2016).

Convergent validity refers to the relationships between 
an instrument’s scores and measures originating from 
other sources that intend to measure the same construct. 
Several authors have reported that patterns of evolu-
tion knowledge and learning were similar when using 
the CANS as compared to the CINS (Anderson et al. 
2002) and the ACORNS (Assessing COntextual Reason-
ing about Natural Selection, Nehm et al. 2012), which is 
a constructed response instrument measuring a similar 
construct (Nehm et al. 2022; Sbeglia and Nehm 2024).

Internal structure validity refers to the degree to which 
test items represent, or tap into, the intended construct. 
This source of validity evidence involves analyzing the 
relationships among items and investigating how they 
collectively contribute to the measurement of the con-
struct (AERA, 2014). A measurement instrument with 
strong internal structure validity has items that are 
related to each other in a theoretically-aligned manner 
(e.g., items fall on a single dimension and vary in difficulty 
as hypothesized by theory) and are capable of produc-
tively measuring the intended construct (e.g., function 
the same way for all respondents). The authors addressed 
this form of validity evidence using Item Response The-
ory (IRT) in a sample of < 300 students to assess the 
dimensionality and fit of the items. IRT can generate 
internal structure validity evidence (Boone 2016; Boone 
et al. 2014; Campbell and Nehm 2013) because it theo-
rizes that certain characteristics of the underlying data 
must be present in order to generate robust measures 
of a latent construct (Boone 2016; Boone et al. 2014; 
Borsboom et al. 2003). More information about each of 
these criteria are provided in the Methods. The results of 
Kalinowski et al.‘s IRT analysis showed that 18 of the 24 
CANS items loaded onto a single dimension, and several 
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of the remaining items had improved factor loadings 
when restricted to the set of questions within the primary 
concept category  (the concept categories of the CANS 
are mutation, inheritance, selection, variation, and evo-
lution). Although this pattern suggests the possibility of 
multiple constructs, no clear multidimensional pattern 
was found and more robust multidimensional analyses 
were not possible due to the small sample size (n = 218). 
The authors speculated that the lack of a clear multidi-
mensional pattern could have been due to insufficient 
sample size, an insufficient number of items, or construct 
underrepresentation (meaning that the items did not 
fully tap into some of the constructs).

Generalization validity refers to the degree to which 
the results of a study can be generalized or extended to 
other contexts. This source of validity evidence is fre-
quently gathered by analyzing the instrument’s perfor-
mance in various contexts such as different populations, 
samples, and even groups within samples. Generaliza-
tion validity evidence for the CANS is minimal. Since 
the initial development of the CANS, no other study has 
investigated the instrument’s psychometric properties in 
a new population.

Methods
Study setting
Data collection for this study took place in 14 semes-
ters of a large-enrollment (> 250 students/semester) 
undergraduate introductory biology course at a public, 
research-intensive university in the United States, clas-
sified as “very high research activity” (R1) by the Carn-
egie Classification of Institutions of Higher Education 
(McCormick and Zhao 2005). All participants were 
enrolled in a course that focused on evolutionary con-
cepts as a central topic, including microevolutionary pro-
cesses and macroevolutionary patterns. The prerequisites 
of this course included completion of high school biol-
ogy and college mathematics, but no other prior biology 
coursework in higher education was required. The course 
welcomed both major and non-major students, with 
most enrolled students being in their first or second year 
at the university.

The course was designed to cover content aligned with 
five core concepts of biological literacy emphasized in 
the American Association for the Advancement of Sci-
ence (AAAS)’s Vision and Change policy document 
(AAAS 2011). As these data were collected over multiple 
years, including before, during, and after the COVID-19 
pandemic, the instructional style varied across different 
implementations. Among semesters, this course covered 
the same content and was taught by a consistent group 
of instructors who used the same lecture material. How-
ever, the format ranged from low to intermediate levels 
of evidence-based instruction (e.g. active learning, group 

work), with earlier semesters generally having the least 
levels of these practices (Nehm et al. 2022).

Participants
Students enrolled in the course were invited to participate 
in this study, which involved completing an online survey 
within the first two weeks of the semester (pre-test) and 
a another survey after the last day of classes  (post-test). 
Students completed the survey asynchronously outside of 
the scheduled class time and were instructed not to use 
outside resources, such as the internet, textbook, or other 
people. Students making a good faith effort received full 
credit. As part of the survey, participants were prompted 
to complete the full 24-item CANS instrument and 
self-report demographic and background information, 
including biology courses taken, biological sex, socially 
defined race, English Learner status, PELL eligibility, and 
college generation status.

Out of the 8599 students enrolled in the course across 
the fourteen semesters, there was a total of 13,568 con-
senting responses, 6762 at the pre-test (78.6% participa-
tion) and 6806 at the post-test (79.1% participation) with 
6483 students completing both surveys. The data were 
subsequently reduced to exclude participants who (1) 
received a perfect score on the pre-test or (2) spent less 
than ten minutes on the survey. The final analyzed data 
set consisted of 12,876 responses (6500 for the pre-test 
and 6376 for the post-test). Demographic data for these 
respondents is summarized in Table 1.

Instrument
We implemented the CANS instrument (Kalinowski 
et al. 2016) without modification in all 14 semesters in 
which this study was conducted. The CANS consists of 
24 multiple choice items designed to assess students’ 
understanding of five concept categories related to evolu-
tion: variation (three items), selection (five items), inheri-
tance (four items), mutation (four items), and how these 
processes interact in evolution (eight items). The items 
are presented in four clusters that are focused on spe-
cific taxa: anteaters (8 items), bowhead whales (6 items), 
saguaro cacti (6 items), and mosquitoes (4 items). Each 
item has a single correct answer and between two and 
four distractors that address common misconceptions 
about evolution. Although the authors did not specifically 
align the items with the misconceptions they address, our 
interpretations of the items suggest that some of the mis-
conceptions are: need-based reasoning, use and disuse 
of traits, nature as a selecting agent, and adaptations as 
exclusively chance-based (Gregory 2009). Higher scores 
indicate more evolution knowledge (incorrect answers 
are coded as “0” and correct answers are coded as “1”).

In the original study, the five concept categories were 
conceptualized after developing a concept map around a 
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network of core concepts (see Fig. 1 in Kalinowski et al. 
2016). Four of these concept categories (inheritance, vari-
ation, selection, and mutation) were at the center of this 
concept map and were connected to other core concepts, 
many of which were also assessed directly within the 
CANS (e.g. struggle for existence, exponential growth, 

environmental stress, chance events). The network of 
concepts converged on a fifth concept category, evolu-
tion, which assessed student understanding of the inter-
action of inheritance, variation, selection, and mutation. 
The instrument was developed to include other concepts 
related to natural selection (e.g., population exponential 
growth) while excluding more advanced evolutionary 
concepts, such as the molecular basis of evolution, or 
related topics like extinction (Kalinowski et al. 2016).

Analysis
Part 1: adherence of the CANS to criteria of robust 
measurement
For an instrument to generate robust measurement of a 
latent construct, specific characteristics of the instru-
ment-derived data must be present (Borsboom et al. 
2003). These characteristics are embodied within the 
psychometric approaches used to investigate and analyze 
the data. Different modeling approaches are best suited 
to different types of response data. Rasch analysis, and 
Item Response Theory (IRT) more broadly, are consid-
ered to be the most appropriate approaches for estimat-
ing continuous latent measures from ordinal response 
data (de Ayala 2019; Hambleton and Jones 1993; Lina-
cre and Wright 1993; Neumann et al. 2011). Like Item 
Response Theory (IRT), the Rasch model adopts a proba-
bilistic approach for estimating latent measures, estab-
lishing that the probability of correctly answering an 
item is based on one parameter; the person’s ability/the 
item’s difficulty (Hambleton and Jones 1993). In IRT, two 
additional parameters -item discrimination and pseudo 
guessing- can be added or removed to improve the model 
fit.

The original validation study of the CANS used a 
three parameter IRT model in which all three param-
eters –item difficulty/person ability, item discrimination, 

Table 1  Sample size and student demographic and background 
information

Category Consenting 
students

All stu-
dents2

Initial sample size
Pre 6762 NA
Post 6806 NA

Final sample size 
(after remov-
ing problematic 
responses)

Pre 6497 NA
Post 6376 NA

Background 
Variables
Race/Ethnicity % American Indian/

Alaska Native
15 (< 1%) < 1%

% Asian 6091 (51%) 44%
% Black/African 
American

710 (6%) 8%

% Hispanic of any race 1282 (11%) 15%
% Native Hawaiian/
Other Pacific Island

15 (< 1%) < 1%

% White 3848 (32%) 34%
Biological sex % Female or non-binary 7555 (60%) 57%
College generation 
status1

% First generation 2814 (41%) 41%

PELL eligibility 
status1

% PELL Eligible 3465 (41%) 40%

Prior Biology % No prior biology 
coursework

4507 (35%) 41%

1These variables were not gathered in all semesters
2Data for all students, including those who did not participate in the study, were 
available for only 12 of the 14 semesters

Fig. 1  Wright map showing Rasch-transformed person abilities for pre- and post-test (left) and Rasch-transformed item difficulties (right). The post-test 
item difficulties were anchored to the pre-test at model estimation
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and guessing– were included. Quantitatively, the Rasch 
model is equivalent to a 1-parameter IRT model in the 
sense that it includes only one parameter (i.e., item dif-
ficulty/person ability). Theoretically, however, Rasch dif-
fers from IRT because it makes the strict assumption that 
no additional parameters are needed for productive mea-
surement and thus are not included (Wright 1977; Boone 
et al. 2014; Stemler and Naples 2021). According to the 
Rasch modeling framework, if the data do not fit the 
Rasch model, then the response patterns of the instru-
ment-derived data are considered to be inconsistent 
with robust measurement and new data need to be gath-
ered and/or the instrument needs to be improved. This 
approach is in contrast to the three-parameter IRT model 
used by Kalinowski et al., which allows the addition and 
removal of parameters in order to attain the best fit to 
the data. A benefit of the stricter Rasch approach is that 
it is more parsimonious and calibrates instruments using 
an equivalent standard of robust measurement (Romine 
et al. 2017). Therefore, Rasch modeling was used in this 
study instead of a three-parameter IRT model because it 
allowed the evaluation of the CANS using a more robust, 
stable, and parsimonious benchmark.

One of the benefits of the Rasch model, is that it con-
verts raw instrument data into a continuous, linear scale 
that can be analyzed using parametric statistics. The raw 
responses to the CANS items were converted into a con-
tinuous, linear scale using a dichotomous Rasch model in 
the R (v. 4.2-21) Package Test Analysis Modules (TAM) 
(Robitzsch et al. 2024). Accordingly, the model was speci-
fied as a ‘1PL’ (1-parameter logistic) estimation. In con-
trast to the 3 parameter IRT model used by Kalinowski et 
al. (2016), item difficulty/person ability is the only param-
eter included in the Rasch model. To investigate item 
fit, reliability, person item alignment and dimensionality 
(see details below),  a separate Rasch model was gener-
ated for the pre- and post-test using marginal maximum 
likelihood (MML) estimation. To compare Rasch per-
son abilities between the pre and post test, the post-test 
item difficulties were anchored to the pre-test at model 
estimation and a marginal maximum likelihood (MML) 
estimation was used. Conversely, to compare Rasch item 
difficulties between the pre and post test, the post test 
person abilities were anchored to the pre-test at model 
estimation and a joint maximum likelihood estimation 
was used due to constraints of the MML function in han-
dling fixed person ability parameters. The equal-interval 
measures resulting from the Rasch models are on a logit 
scale and contain information about both the item diffi-
culty and person ability. Given the linear nature of these 
transformed measures, such measures are appropri-
ate for use in subsequent parametric statistical analyses 
(Boone et al. 2014). Below we describe how we analyzed 
pre- and post-test CANS responses from 14 semesters 

for their adherence to four specific criteria of good mea-
surement: (1) acceptable item fit, (2) acceptable item and 
person reliability, (3) acceptable person-item alignment 
(Wright maps), and (4) unidimensionality.

Item fit
To test whether the CANS items display acceptable fit to 
model expectations, we generated weighted  (infit) and 
unweighted (outfit) mean squares (MNSQ) item fit statis-
tics (RQ.1.1). MNSQ values of 1.0 indicate that the data 
fits the model as expected, whereas values above 1 may 
indicate data underfit (due to unmodeled variation) and 
values below  1 may indicate data overfit (due to redun-
dancy in explained variation). Multiple choice items 
within a MNSQ fit range between 0.7 and 1.3 are consid-
ered productive for measurement but note that less con-
servative ranges (e.g., 0.5-1.5)  have been recommended 
for Likert scale items Wright and Linacre 1994; Boone 
et al. 2014;  Bond and Fox 2007). Items outside of these 
ranges do not fit the Rasch model and do not contrib-
ute to productive measurement of the latent constructs, 
which could be due to factors such as inconsistent inter-
pretations of the items or items that represent multiple 
underlying constructs (Boone 2016). Fit values above 2.0 
are interpreted as distorting or degrading to the mea-
surement model (Boone et al. 2014).

Reliability
To test whether the CANS consistently ordered items by 
their difficulties and ordered respondents by their abili-
ties, we calculated item and person reliability (RQ 1.2). 
Item reliabilities were calculated to evaluate the item 
hierarchy, which indicates whether the Rasch model is 
able to predictably separate items by their difficulties. 
Item reliability was calculated using the expected poste-
riori/plausible value reliability (EAP/ PV) index, which 
estimates whether the hierarchy of item difficulties could 
be replicated in a population of different individuals with 
similar person abilities.

Person reliabilities were also calculated to evaluate the 
extent to which the Rasch model was able to effectively 
distinguish between persons of different abilities (Bond 
and Fox 2007). Person reliability was calculated using 
the WLE separation index, which estimates whether the 
order of person abilities could be replicated with items of 
similar difficulties. Reliability values above 0.7 were con-
sidered acceptable for both the item and person reliabil-
ity indices.

Person-item alignment using wright maps
The alignment of an instrument’s difficulty to the abil-
ity of the sample in which it was administered indicates 
its level of measurement precision (Boone 2016; Boone 
et al. 2014). An instrument that is capable of precise 
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measurement will have varying item difficulties that span 
the full range of person abilities, allowing for respondents 
to be differentiated meaningfully based on their abili-
ties. The criterion that person abilities and item difficul-
ties should align is analogous to the expectation that a 
ruler has a sufficient number and location of tick marks 
to meaningfully differentiate individuals in the measured 
population. Therefore, to test whether the CANS is capa-
ble of precisely measuring the latent trait (RQ 1.3), item 
difficulties from a unidimensional Rasch model were 
plotted against the associated person abilities using a 
Wright map. Respondents at the top of the Wright map 
(higher logit measures) are interpreted to have higher 
abilities on the latent trait (i.e., more evolution knowl-
edge), while respondents at the bottom of the map (lower 
logit measures) are interpreted as having lower abili-
ties  (i.e., less evolution knowledge). Correspondingly, 
items with higher logit measures are interpreted as being 
higher in difficulty, while those with lower logit measures 
are interpreted as lower in difficulty. The Wright map was 
used to visualize the extent to which the difficulties of 
items in the CANS spanned the abilities of the respon-
dents. The instrument lacks measurement precision if the 
item difficulties do not adequately span the respondent 
abilities (Boone 2016; Boone et al. 2014).

Dimensionality
A measurement instrument must tap into only one 
construct (i.e., be unidimensional) in order to generate 
meaningful measures of the amount of that construct a 
person has (AERA, 2014). Because the CANS was origi-
nally developed to cover five major concept categories 
associated with natural selection (evolution, inheritance, 
selection, variation, and mutation), Kalinowski et al. ini-
tially hypothesized that each of these categories could be 
distinct constructs (or dimensions), in which case, one 
would model them as separate unidimensional models. 
Conversely, it is possible that the entire instrument falls 
on a single dimension. Kalinowski et al.’s dimensionality 
analyses of the CANS were limited by low sample sizes 
and generated inconclusive results regarding whether a 
unidimensional or a multidimensional model was most 
appropriate. We used a Rasch framework and a much 
larger sample size to robustly test the dimensionality of 
the CANS.

Specifically, two Rasch-based approaches were used 
to test whether the CANS is best characterized as unidi-
mensional or multidimensional (RQ 1.4). First, we ran a 
unidimensional Rasch model by treating all 24 items as 
a single dimension. The dimensionality of the response 
patterns was then assessed using a principal compo-
nent analysis (PCA) of the residuals from the unidimen-
sional Rasch model. Because the unidimensional Rasch 
model assumes that the data had only one dimension, 

the residuals are expected to have no structure because 
nearly all variation in the response data should be 
accounted for by the single modeled dimension. How-
ever, if the instrument-derived responses are multidi-
mensional, the residuals from a unidimensional Rasch 
model are expected to be large and may possibly show 
a pattern of shared unexplained variance (i.e., shared 
variance not accounted for by a unidimensional Rasch 
model), which may indicate the presence of one or more 
additional and unintended constructs (Boone et al. 2014). 
If present, signals of patterns in these residuals would be 
apparent in the PCA’s first contrast, with an eigenvalue 
greater than 2 suggesting potential multidimensionality 
(Boone et al. 2014). PCA of Rasch residuals is an unsu-
pervised and atheoretical approach to test for signals of 
multidimensionality, which is advantageous for discov-
ering unexpected dimensionality patterns within the 
instrument without a priori assumptions.

The second approach of testing for multidimensional-
ity examines hypothesized dimensions using a statisti-
cal framework that compares the fit of a unidimensional 
and multidimensional Rasch model. The hypothesized 
multidimensional model is grounded in theoretical 
assumptions of the structure of the construct. The fit 
of the uni- and multidimensional models may then be 
compared to each other using likelihood ratio testing 
(Neumann et al. 2011; Robitzsch et al. 2024). For models 
that are not significantly different, the more parsimoni-
ous unidimensional model is favored. In the case where 
the null hypothesis is rejected, the models are com-
pared using the Bayesian information criterion (BIC). 
The BIC parameter is calculated from the log-likelihood 
of the model and includes a penalty term for the num-
ber of parameters, favoring simpler models. The model 
with the lower BIC is evaluated as having a more opti-
mal fit. We designed the multidimensional model to have 
five dimensions, one for each concept category in the 
CANS. Finally, the correlations between the person abili-
ties for each of the five dimensions of this model were 
examined, with interpretations of correlation coefficient 
strength informed by Akoglu (2018). A strong correlation 
between all dimensions would suggest unidimensionality 
whereas a weak correlation among all dimensions would 
provide strong evidence of a five-dimensional structure.

Part 2: student knowledge and learning of natural 
selection
The lme4 package (Bates et al. 2024) was used to gener-
ate linear mixed effects models (also called hierarchical 
linear models) to examine patterns of incoming evolu-
tion knowledge and learning in association with students’ 
first exposure to college level evolution instruction. 
In all models, pre-test person abilities were generated 
using a unidimensional Rasch model by anchoring the 
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post-test item difficulties to the pre-test Rasch model at 
model estimation. The person ability measures (in log-
its) generated from the unidimensional Rasch models 
were then included in the GLM model as a continuous 
outcome variable. Instructional time point (pre-test and 
post-test), semester, prior biology coursework, biologi-
cal sex, and socially defined race were included as fixed 
effects. Respondents who were missing any of these vari-
ables were excluded from the final model, and PELL eli-
gibility and college generation status were not included 
as this information was collected in only a subset of 
semesters. The pre-test person abilities were designated 
as the reference for the “time point” variable, “no prior 
biology” was set as the reference for the prior biology 
variable, “male” was set as the reference for the biologi-
cal sex variable, and “White” was set as the reference for 
the socially defined race variable. Because this analysis 
involved a repeated measures design (two time points per 
respondent), student identification was added as a ran-
dom effect (random-intercept only). The model was fitted 
using restricted maximum likelihood (REML), and the p 
values were calculated using t-tests with Satterthwaite’s 
method (Satterthwaite 1941). Partial omega squared 
(2

P) was used as a measure of effect size to measure the 
unique variance that each variable contributes to differ-
ences in Rasch transformed CANS measures (Lakens 
2013). The magnitude of the contribution of instruction 
on evolution learning (RQ 2.1) can be measured by the 
effect size of the “time point” variable.

Interaction effects between time point and semester, as 
well as between time point and each student background 
variable, were added to examine whether there were dis-
proportionate learning gains by semester (RQ2.2) and 
student background characteristics (RQ2.3). To deter-
mine which concepts were the most difficult for students, 
the mean Rasch item difficulty for each concept category 
was calculated and examined (RQ2.4).

Finally, the structure of student knowledge across evo-
lutionary phenomenon (RQ 2.5) was evaluated by com-
paring the knowledge magnitude and dimensionality 
across phenomena with the following combinations of 
features: (1) plant trait gain, (2) plant trait loss, (3) ani-
mal trait gain, and (4) animal trait loss. These phenomena 
were chosen because items in the instrument were spe-
cifically designed to include trait polarity (trait gain/loss) 
and taxon (animal, plant). When the knowledge mag-
nitude differs significantly across phenomena, reason-
ing can be considered fragmented (i.e., not coherent). If 
reasoning patterns for one phenomenon (e.g., plant trait 
gain) are not predictive of those for another (e.g., animal 
trait loss) across respondents, then the data are multidi-
mensional, and reasoning can be considered differently 
fragmented among respondents. If appropriate items 
exist within an instrument, a multidimensional model 

in which each phenomenon is designated as a separate 
dimension can be estimated and compared to a unidi-
mensional model using a likelihood ratio test.

Results
Part 1: adherence of the CANS to well-accepted criteria of 
robust measurement
RQ 1.1: do items that comprise the CANS display acceptable 
fit to model expectations?
Using a unidimensional model, 19 items had acceptable 
infit and outfit MNSQ fit statistics at the post test, and 
five items (i.e., 5, 6, 12, 19, and 20) had unacceptable out-
fit (the infit was within acceptable ranges). Items 6, 12 
and 20 were underfitting the Rasch model with an outfit 
MNSQ above 1.3, whereas items 5 and 19 were overfit-
ting the Rasch model with an outfit MNSQ below 0.7. 
Items 5 and 19 were also among the easier items at this 
time point (Table  2). Although all five items are con-
sidered unproductive for measurement, they were not 
degrading to measurement because their outfit MNSQ 
statistics were below 2 (Table  2). At the pre-test, only 
three items (i.e., 6, 12, and 20) were misfitting, with both 
outfit and infit MNSQ values above 1.3, suggesting model 
underfit. The outfit MNSQ measures for items 6 and 
12 were above 2, indicating that they were degrading to 
measurement. These two items also had the highest item 
difficulties (Table 2) and the lowest proportion of respon-
dents answering them correctly in the post-test (29% for 
item 6 and 37% for item 12) (Table S-3; Table S-4).

RQ 1.2: Does the CANS reliably order items by their difficulties 
and respondents by their abilities on the latent traits?
Using a unidimensional Rasch model, the EAP/PV item 
separation reliability was 0.80 for the pre-test and 0.81 
for the post-test. The WLE reliabilities were 0.78 for both 
the pre- and post-tests. Therefore, all reliability statistics 
were above the 0.7 threshold at both time points, indicat-
ing that items and persons could be ordered consistently 
along the latent trait. These findings suggest acceptable 
reliability of measurement for the CANS.

RQ 1.3: to what extent does the CANS precisely measure the 
latent trait?
The Wright map for the unidimensional Rasch model 
shows that item difficulties were clustered around the 
middle of the distribution of respondent abilities (Fig. 1). 
Therefore, the item difficulties did not span the full dis-
tribution of respondent abilities. Students at the highest 
and lowest ability levels were not precisely measured by 
the CANS instrument.
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RQ 1.4: is the structure of the CANS best characterized as 
unidimensional or multidimensional?
The residuals of the unidimensional Rasch model had 
an eigenvalue of the first contrast that was greater than 
2 (2.34), indicating that there may be unexplained varia-
tion in the unidimensional model, possibly due to the 
unintended inclusion of additional constructs. We plot-
ted the item difficulties against the first contrast of the 
Rasch residuals to examine clustering among items 
within the five major concept categories covered in the 
CANS (Fig. 2). There was little evidence of clustering of 
these Rasch residuals by the five concept categories that 
were hypothesized by Kalinowski et al. to represent indi-
vidual sub constructs within a multidimensional model. 
A possible exception may be the categories of mutation 
and selection, which showed some evidence of clustering 
in the Rasch residuals.

A five-dimensional Rasch model was then constructed 
based on the five concept categories. However, we do not 
report the MNSQ fit statistics of this model due to incon-
sistencies each time the model was generated, which may 
be partially attributed to the low person and item reli-
abilities in many of the dimensions. Despite these incon-
sistencies, we report that when the fit of this model was 

compared to the fit of the unidimensional model using 
maximum likelihood testing, the five-dimensional model 
had a significantly better fit (lower BIC) than the unidi-
mensional model at the post-test (χ2 = 2564.3, df = 14, 
p < 0.001) but only some concept categories had accept-
able item reliabilities (Table  3). A significant difference 
was not observed between the unidimensional and five-
dimensional models for the pre-test data (χ2 = -31403.9, 
df = 22, p > 0.05), suggesting that the more parsimoni-
ous one-dimensional model was a better fit at this time 
point (Table S1). For both time points, the correlations 
between the five dimensions ranged between strong and 
weak (Figure S1), mirroring the inconclusive dimension-
ality results reported throughout this manuscript.

We then examined the fit and reliability statistics of the 
five individual unidimensional models to assess whether 
this theoretically grounded model demonstrated accept-
able measurement statistics. Similar to the five-dimen-
sional model, we report that the weighted MNSQ fit 
statistics values for the five one dimensional models were 
inconsistent across model estimations; in some estima-
tions, all items had acceptable fit, whereas items in the 
inheritance and variation concept categories demon-
strated misfit in other iterations. Furthermore, the EAP/

Table 2  Item difficulties, and weighted (infit) and unweighted (outfit) MNSQ fit statistics of the unidimensional CANS model
Item CANS Concept 

Category
Item difficulty Outfit MNSQ 

(Post-test)
Infit MNSQ 
(Post-test)

Outfit MNSQ 
(Pre-test)

Infit 
MNSQ 
(Pre-test)

Item 1 Evolution -0.70 0.86 0.91 0.88 0.91
Item 2 Selection -0.21 1.09 1.06 1.13 1.11
Item 3 Inheritance -0.13 1.04 1.03 0.98 0.98
Item 4 Variance -0.20 1.23 1.15 1.26 1.21
Item 5 Mutation -1.02 0.61 0.79 0.97 1.03
Item 6 Selection 1.84 1.64 1.25 2.32 1.73
Item 7 Evolution 0.92 1.06 1.04 0.72 0.77
Item 8 Inheritance -0.71 0.75 0.85 0.85 0.90
Item 9 Evolution -0.87 0.68 0.81 0.81 0.87
Item 10 Evolution -0.92 0.86 0.92 0.77 0.83
Item 11 Mutation 0.23 0.83 0.86 0.70 0.75
Item 12 Selection 1.38 1.43 1.23 2.37 1.89
Item 13 Variance -0.12 1.24 1.16 1.25 1.20
Item 14 Inheritance 0.23 1.06 1.05 1.01 1.00
Item 15 Evolution -0.17 0.83 0.89 0.85 0.87
Item 16 Selection -1.02 0.73 0.86 0.78 0.85
Item 17 Evolution 1.00 1.09 1.05 0.82 0.83
Item 18 Variance -0.26 1.01 0.99 1.10 1.08
Item 19 Mutation -0.64 0.63 0.76 0.88 0.92
Item 20 Selection 0.14 1.37 1.27 1.55 1.42
Item 21 Evolution -0.14 0.86 0.91 0.87 0.89
Item 22 Inheritance 0.63 0.99 0.99 0.88 0.89
Item 23 Mutation 0.39 0.82 0.85 0.72 0.76
Item 24 Evolution 0.35 1.25 1.20 1.10 1.05
The underlined values reflect outfits that are outside of the acceptable fit range (0.7–1.3 mean squares). The bolded values reflect outfits that are considered 
degrading to measurement
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PV item separation and WLE person separation reli-
abilities were consistently below the acceptable threshold 
(Table 3).

Part 2: evolution knowledge and learning
RQ 2.1 What are the magnitudes of CANS pre-test measures 
and learning gains across 14 semesters of a high-enrollment 
gateway biology course?
Students entered the course with low levels of evolu-
tion knowledge as measured by the CANS. Using raw 

composite CANS scores to allow for comparability with 
other studies, the median at pre-test was 10/24 cor-
rect responses (x̅=10.9 ± 4.9, ∼ 45% correct). There was a 
substantial increase in the raw composite CANS scores 
from the pre-test to the post-test, with a median of 16/24 
correct responses following instruction in the post-test 
(x̅=15.3 ± 4.9, ∼ 64% correct). The Rasch-transformed 
person ability measures mirrored these findings, with 
a significant increase in mean logit measures from pre-
test (x ̅= -0.2 ± 1.04) to post-test (x ̅ = 0.72 ± 1.12). A linear 

Table 3  Item and person reliabilities for each concept category modeled as a separate unidimensional rasch model or a single five-
dimensional model (post-test survey only)

CANS Concept Category
Type of Model Reliability measure Evolution Mutation Inheritance Selection Variance
Separate Uni-
dimensional Models

EAP/PV 0.68 0.68 0.44 0.19 0.37
WLE 0.51 0.26 0.04 0.00 0.00

Five Dimensional Model EAP/PV 0.81 0.82 0.81 0.47 0.49
WLE 0.53 0.19 0.07 0.02 0.00

Fig. 2  First contrast of the PCA of Rasch residuals and item difficulties for the unidimensional Rasch model at the post-test model estimation. Items were 
classified into the five concept categories that the CANS was conceptualized to encompass. There is limited evidence of clustering of residuals across 
these categories, with the possible exception of shared structure among the items that address mutation and selection
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mixed effects model was conducted using the Rasch-
transformed person ability measures (see Table S5 for 
a conversion guide that can be used on CANS datasets 
from other samples). The results showed significant 
and large gains in CANS measures when controlling for 
demographics, background variables, and semester, (β 
= 0.45, t = 19.01, p < 0.001) (Table  4; Table S6), parallel-
ing the increase in raw scores. The effect size of instruc-
tion on CANS measures was large (ωp² = 0.46) (Table 5). 
These results collectively indicate that students had rela-
tively low knowledge of core concepts related to natural 
selection upon course entry, but experienced significant 
and meaningful gains in natural selection knowledge fol-
lowing instruction.

In alignment with the general finding that CANS mea-
sures increased on the post-test, most items were less dif-
ficult for students at the post-test and did indeed show a 
higher proportion of correct responses following instruc-
tion (Table S-3; Table S-4). However, there are notable 
exceptions that could indicate problems with the items 
as well as issues related to instruction. Specifically, item 6 
had only a marginal increase in the proportion of correct 
responses and maintained a high item difficulty measure 
on the post-test, and item 12 had a slight decrease in the 
proportion of correct responses and an increase in item 

difficulty on the post-test. Both items also had poor fit on 
the pre-test. Item 20 also experienced an increase in the 
item difficulty from pre- to post-test and item 13 experi-
enced almost no change in item difficulty over this time 
period.

RQ2.2 How variable are CANS measures across semesters?
Both pre-test knowledge of natural selection and post-
test learning gains differed across semesters, but the 
semester explained little of the variance in the Rasch-
transformed CANS measures (ωp²<0.01) (Tables  4 and 
5; Table S6). In comparison to the earliest semester in 
which the data were gathered (Semester 1), three semes-
ters displayed significantly lower pre-test knowledge of 
natural selection at the 0.01 significance level: Semester 
7 (β = -0.03), Semester 9 (β = -0.06), and Semester 10 
(β = -0.03). Learning gains also varied from the inau-
gural semester, with significantly lower learning gains 
in Semester 7 (β = -0.03), Semester 9 (β = -0.06), and 
Semester 10 (β = -0.03), and significantly higher learn-
ing gains in Semester 6 (β = 0.03). These patterns in pre-
course knowledge and post-test learning gains are shown 
in Fig. 3 and Figure S2 and demonstrate that there is no 
consistent pattern in knowledge or learning that is linked 
to temporal progression through the 14 semester study 
period.

RQ 2.3. How variable are CANS measures across different 
student background characteristics?
Student background and demographic characteristics 
explained a significant amount of variance in the Rasch 
transformed CANS measures. Controlling for these 
variables, male identifying students had significantly 
higher knowledge of natural selection at pre-test than 
female and non-binary identifying students (β = -0.12, t 
= -10.66, p < 0.001) (Table 4; Table S6). The unique vari-
ance explained by biological sex was small (ωp²=0.03) 
(Table  5). The interaction effect between biological sex 
and instructional time point was nonsignificant, indi-
cating that students had similar evolution learning gains 
regardless of biological sex, although this means that the 
disparities present at the pre-test remained.

At course entry, students who identified as White had 
significantly higher knowledge of natural selection in the 
pre-test than students who identified as Asian (β = -0.14, 
t=-11.14, p < 0.001), Black or African American (β = -0.13, 
t = -10.759, p < 0.001), or Hispanic of any race (β = -0.12, t 
= -9.59, p < 0.001). The unique variance explained by race 
was small (ωp²=0.04), but had a larger effect than biologi-
cal sex. Similar to biological sex, students of all socially 
defined races had similar learning gains from pre- to 
post-test as indicated by the insignificant interaction 
effects between each racial group and time point.

Table 4  Summary of regression results for the CANS
Variable Differences

Pre-test
Knowledge

Biological Sex Male > Female and non-binary
Race White > Asian, Black/African 

American, Hispanic of any race
Prior Biology 
Coursework

1 or more courses > 0 courses

Semester Semester 1 > Semester 7, 
Semester 8, Semester 10, 
Semester 11, Semester 13

Learning Gains Instruction (pre to 
post)

Post > pre

Biological Sex n.s.
Race n.s.
Prior Biology 
Coursework

0 courses > 1 or more courses

Semester Semester 1 > Semester 7, 
Semester 9, Semester 10
Semester 1 < Semester 6

Table 5  Partial omega squared (ωp²) to measure effect size (with 
the following cutoffs: small = 0.01, medium = 0.06, large = 0.14) for 
instructional time point, semester, biological sex, prior biology 
coursework, and race
Variable Partial omega squared (ωp²)
Instructional Time point 0.46
Semester < 0.01
Biological Sex 0.03
Prior Biology Coursework 0.04
Race 0.04
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Students who entered the course after completing 
one or more prior biology courses had significantly 
higher knowledge of natural selection (β = 0.18, t = 16.11, 
p < 0.001) than students without prior coursework. The 
unique variance explained by prior coursework was small 
(ωp²=0.04). In contrast to biological sex and socially 
defined race, there was a significant interaction effect 
between prior biology coursework and instructional time 
point (β = -0.06, t = -5.56, p < 0.001), with students that 
had one or more prior biology courses experiencing less 
learning gains than students without prior coursework. 
In other words, while students who entered the course 
without prior coursework had lower knowledge of natu-
ral selection, they experienced disproportionately higher 
learning gains that mitigated this knowledge debt by the 
end of the course.

RQ 2.4 which evolution topics within the CANS are most 
difficult for students?
Of the five concept categories, items that focused on 
mutation were generally easiest for students (mean item 
difficulty=-0.26), as evidenced by the high proportion of 

students answering correctly in the post-test and the low 
item difficulties (Fig. 2). The items that were most diffi-
cult for students were in the evolution (mean item dif-
ficulty=-0.07) and selection (mean item difficulty = 0.43) 
concept categories. Specifically, the most difficult items 
within these categories (with less than 50% of students 
answering correctly at the post-test) probed for student 
understanding of competition in an ideal environment 
(item 6), trait loss (item 7), exponential growth using 
graphical intuition (item 12), and the role of individuals’ 
responses to the environment in evolutionary change 
(item 17).

RQ 2.5: What is the structure (i.e., coherent vs. fragmented) of 
student evolutionary knowledge across phenomena?
It was not possible to meaningfully assess the structure 
of knowledge using the CANS because the items repre-
senting the four phenomena –plant trait gain, plant trait 
loss, animal trait gain, animal trait loss– were unbal-
anced (Table  6). Specifically, trait polarity and taxon do 
not appear equally in all five concept categories that the 
CANS authors conceptualized to define the construct 

Fig. 3  Mean Rasch person ability measures for the CANS at the pre- and post-test, disaggregated by semester
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of natural selection knowledge; there is only 1 item that 
addresses mutation in plants and no items that address 
inheritance in plants (Table  1). There are also no items 
that address trait loss in plants, meaning that no items 
could be included in the plant trait loss dimension. Over-
all, plants are represented in substantially fewer items 
than animals and trait loss is represented in substantially 
fewer items than trait gain. As a result, it was not pos-
sible to test for dimensionality in alignment with these 
features.

Discussion
Our study sought to expand the validity evidence for the 
CANS by investigating whether the instrument produc-
tively measured the intended construct using a more 
stringent 1-parameter IRT model and a new and much 
larger (> 6000) sample of undergraduate students that 
spans 14 semesters of a gateway biology course. Unlike 
the original publication, our sample allowed rigor-
ous tests of multidimensionality, replication of findings 
through time, and ample statistical power for examin-
ing knowledge and learning of natural selection among 
students with different backgrounds and demographic 
characteristics.

Measurement of Natural Selection understanding using 
the CANS
Our psychometric analyses assessed dimensionality, item 
fit, reliability, and person-item alignment of the CANS. 
Overall, our results showed a similar, but more complete 
picture about the psychometric properties of the CANS 
as compared to the original study. In the original study, 
Kalinowski et al. (2016) reported high person separation 
reliability and unidimensional factor loading for a major-
ity (18/24) of the items. However, they reported that six 
items had poor factor loading in a unidimensional IRT 
analysis (items 4, 6, 12, 13, 18, and 20). Similarly, in the 
present study, a one-dimensional structure generated 

sufficient reliabilities and acceptable item fit for most 
(i.e., 19/24) items, but several of the same items identified 
by Kalinowski et al. were found to have problematic fit 
statistics in this study as well. Specifically, like Kalinowski 
et al., items 6, 12, and 20 were identified as misfitting 
(additionally, items 5 and 19 were also identified as mis-
fitting in our study). However, despite the high reliabili-
ties and generally strong item fit, our analysis of Rasch 
residuals of the 1-dimensional model generated an eigen-
value of the first contrast that was > 2, suggesting the 
presence of additional, possibly unintended dimensions 
or constructs. Kalinowski et al.’s finding that six items in 
two content categories had low loadings on a unidimen-
sional IRT analysis were interpreted by the authors to 
suggest a similar conclusion about the presence of mul-
tiple dimensions.

The finding that there may be multiple dimensions in 
the CANS is not particularly surprising and was even 
hypothesized a priori by Kalinowski et al. as one pos-
sible structure for this instrument. In particular, the five 
concept categories were each expected to measure a 
distinct topic, suggesting the possibility of a five dimen-
sional structure for the CANS. To test this hypothesized 
structure, Kalinowski et al. fit five separate unidimen-
sional IRT models (using a 2 or 3-parameter IRT model) 
and their results showed that two of the previously 
low loading items (12 and 20) in the selection category 
became high loading. The other four items (4,6, 13, and 
18) remained low loading. Therefore, Kalinowski et al.’s 
analyses suggest that the five-dimensional modeling 
approach may have improved the fit of the response data 
to some extent.

Our much larger sample size allowed us to conduct a 
more robust multidimensionality test. We report that 
the multidimensional model had significantly better fit 
to the response data than the one dimensional model for 
the post-test (but not the pre-test). However, the reli-
abilities for the variation and selection concept catego-
ries were also very low and the items had inconsistent 
fit indices (Table  7). The low reliabilities could be due 
to an insufficient number of items within these catego-
ries and to possible problems with the items themselves, 
which we discuss more in the next section. Overall, there 
were dimensionality problems reported for both the one-
dimensional and five-dimensional model in this study, 
indicating that dimensionality weaknesses of the CANS 
reported by the instrument’s authors are not sufficiently 
addressed by large sample sizes or more robust dimen-
sionality analyses.

We also analyzed the precision with which the items 
measured the target population by comparing the align-
ment of the item difficulties to the person abilities. 
Rasch item difficulties and person abilities plotted on the 
Wright map showed that the items did not span the full 

Table 6  Distribution of items across taxa for two theoretical 
constructs related to the structure of students’ evolutionary 
knowledge

Plant Animal
Concept Category
Evolution ✓ (2 items) ✓ (6 items)
Mutation ✓ (1 item) ✓ (3 items)
Inheritance x (0 items) ✓ (4 items)
Selection ✓ (2 items) ✓ (3 items)
Variation ✓ (1 item) ✓ (2 items)
Trait Polarity
Trait Gain ✓ (1 item) ✓ (2 items)
Trait Loss x (0 items) ✓ (2 items)
Anteater, bowhead whale, and mosquito were classified into ‘animal’ whereas 
saguaro cacti was classified under ‘plant.’ Bold text indicates there were no 
items for the construct within the taxon
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range of abilities for the undergraduate students in this 
sample, which suggests relatively low measurement pre-
cision for students with the lowest and highest ability 
levels. This pattern is especially pronounced for three of 
the concept categories –variation, mutation, and inheri-
tance. The items in the variation category align with a 
very narrow range of student abilities, and the mutation 
and inheritance categories are in need of more difficult 
items. Future revisions to the CANS should modify exist-
ing items or add new items to encompass a broader range 
of difficulties for these categories, and possibly remove 
items that target the same topic yet have similar item 
difficulties.

Overall, both Kalinowski et al. (2016) and this study 
showed evidence that neither a one-dimensional nor 
five dimensional model was clearly the most appropriate 
structure for the CANS, and our much larger sample size 
and more robust dimensionality analysis did not resolve 
this issue. Furthermore, the instrument may have low 
precision of measurement for some students, especially 
for certain topics. Finally, multiple items displayed prob-
lematic fit statistics, some of which were also identified 
as poor fitting by Kalinowski et al. Below we detail the 
problematic items (Tables 8 and 7) and propose possible 
explanations and solutions for their poor fit.

Potentially problematic items in the CANS
Several CANS items were identified as misfitting in this 
study, some of which may be candidates for modification 
or removal (Tables 8 and 7). Specifically, items 6, 12, and 
20 were found to underfit the Rasch model with MNSQ 
values above 1.3, suggesting guessing and careless mis-
takes (Bond and Fox 2007). Although item 20 was unpro-
ductive for measurement, items 6 and 12 were found to 
be more problematic because their outfit MNSQ outfit 
value was above 2, indicating they were likely degrading 
to the measurement model at the pre-test (see Table S2 
for the text of these problematic items). Kalinowski et al. 
identified these same three items as problematic. In addi-
tion, items 12 and 20 were also resistant to instruction in 
our sample as evidenced by increasing item difficulties 
from pre to post test (Table S4).

Items 5 and 19 were also misfitting in our study but had 
MNSQ values at the other end of the acceptable fit range 
(i.e., < 0.7), indicating a different concern. Specifically, 
low MNSQ values indicate model overfit and that the 
responses are overly predictable and redundant (Bond 
and Fox 2007). In fact, items 5 and 19 assess the same 
concept and misconceptions using the same item format 
but differ in the taxon specified. Specifically, item 5 con-
textualizes natural selection within an animal and item 
19 conceptualizes within a plant (See Table S2 for the 
item text). Parallel items like these can be extremely use-
ful for understanding the role of phenomena in student 
evolutionary reasoning. Therefore, because their fits were 
acceptable at the pre-test and not degrading to measure-
ment at post test and because their overfit is likely due 
to the parallel nature of the items, we do not recommend 
removing or modifying these items. We therefore focus 
our analysis of problematic items below on the misfitting 
items 6, 12, and 20 as well as on one other item (Item 13) 
that fit the Rasch model but was found to be effectively 
resistant to instruction despite specific emphasis on the 
topic during instruction (Table S4).

Item 6 is from the selection content category was found 
to be misfitting on both the pre- and post-test (pre out-
fit: 2.17, post outfit: 1.60). This item prompts students to 
evaluate descriptions of what life is probably like for ant-
eaters who live in a reserve with a stable population size 
(see Table S2 for the text of the item). The item seeks to 
draw out reasoning about competition, which has been 
argued to be a relevant concept in evolutionary reason-
ing, but not necessarily a core concept (Nehm and Ridg-
way 2011; Opfer et al. 2012). In other words, normative 
evolutionary reasoning could include the concept of 
competition, but absolutely requires only three concepts: 
variation, heredity, and selection. Therefore, the inclu-
sion of competition within a measure of natural selection 
understanding may introduce construct-irrelevant varia-
tion in the response data. In fact, the gateway biology 

Table 7  Recommended improvements for the CANS
Categories Finding Recommendation
Item fit Items 6, 12, and 20 were misfit-

ting on the pre or the post-test 
survey

Modify or remove 
these items as de-
scribed in Table 8.

Item difficulty Some content categories (e.g., 
variation, mutation) have too 
little variation in their item dif-
ficulties and do not match the 
abilities of the respondents.

Write new items 
that broaden the 
item difficulty.

Item redundancy Items 4, 13, and 18 are all about 
the same topic (variation) and 
have similar item difficulties.

Modify these 
items to vary in 
difficulty.

Content validity Some items (e.g., items 6, 12, 
and 20) may be adding con-
struct irrelevant variation.

Remove or modify 
these items.

Pre-post learning 
patterns

Items 13 and 20 did not change 
following instruction despite 
explicit attention to this topic 
during the course.

Modify items; 
see specific item 
recommendations 
in Table 8.

Reliability Low reliability in the varia-
tion and selection content 
categories when modeled as 
five dimensions.

Remove or modify 
misfitting items 
and add more 
items.

Item representa-
tion and balance

The features of trait polarity and 
taxon are not balanced among 
the items and poorly opera-
tionalized into phenomena

Add items about 
trait gain, trait 
loss, inheritance 
selection, muta-
tion, variation, and 
evolution in plants 
to balance it with 
the animal items.
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course in which this study took place did not explicitly 
address the role of competition in evolutionary change, 
which may explain why students in this sample showed 
almost no knowledge gains on this topic at post-test 
(Table S3).

Another possible reason for this item’s misfit is that 
students may be using knowledge about the nature of sci-
ence, not just about evolution, in their reasoning. Specifi-
cally, the item prompt asks students to evaluate possible 
descriptions of what life is like for these anteaters and one 
of the answer options is “It is impossible to know with-
out actually observing anteaters in the reserve”, which 
was selected by 36% of students at the pre-test. In the 
Nature of Science literature, descriptions are inextrica-
bly connected to the concept of observations (Lederman 
and Abd-El-Khalick 2002; Lederman et al. 2002). Assert-
ing that no description can be made because of a lack of 
observational evidence is arguably legitimate reasoning 
that aligns with fundamental principles of the nature 
of science. Items that tap students’ nature of science 
knowledge may also be generating construct-irrelevant 
variation.

Item 12 is also from the selection content category and 
was found to be misfitting on the pre-test (outfit: 2.22). 

This item prompted students to predict what the popu-
lation growth of bowhead whales would be expected 
to look like in graphical form (see Table S2 for the full 
item). The question seeks to draw out reasoning about 
exponential growth using graphical representations of 
population size change. Because graphical reasoning, to 
our knowledge, is not considered part of the construct 
of natural selection understanding, this item may also 
be adding construct-irrelevant variation. In addition, the 
item’s focus on the topic of exponential growth may also 
be inserting construct-irrelevant variation. Although all 
populations have the potential for exponential growth, 
such a growth pattern (and indeed any growth at all) is 
not a necessary feature of natural selection. Again, the 
gateway biology course in which this study took place 
did not explicitly address the role of exponential growth 
in evolutionary change, which may explain why students 
did not show knowledge gains on this topic at post-test.

Item 13 had no fit issues at either the pre- or post-
test, but, though technically not resistant to instruction, 
the item difficulty decreased by only 0.02 logits despite 
explicit instruction on the topic it aims to address. This 
item prompted students to identify the cause of swim-
ming speed variation in bowhead whales, which was 

Table 8  Summary of problematic items as indicated by the current study’s analysis and Kalinowski et al. (2016)’s IRT analysis
Item Psychometric Pattern Recommended Improvements

IRT Factor 
Loading1

Unidimensional Rasch 
Model Fit 2

Resistance to 
Instruction2

Construct 
Irrelevant 
Variation2

4 Poor factor 
loading

Acceptable Not resistant. Item dif-
ficulty decreased.

Absent No specific changes recommended by Kalinowski et al. and 
our study did not find problems with this item. The item 
requires reading of an introductory paragraph at the begin-
ning of the section for full context. It may be beneficial to 
provide this information directly in the question itself.

5 Acceptable fac-
tor loading

Unacceptable. Unproduc-
tive for measurement likely 
due to redundancy with 
item 19.

Not resistant. Item dif-
ficulty decreased.

Absent No improvements recommended

6 Poor factor 
loading

Unacceptable. Degrading 
to measurement

Not resistant. Item dif-
ficulty decreased.

Present Address possible construct irrelevant variation related 
to the nature of science or remove the item from the 
instrument.

12 Poor factor 
loading

Unacceptable. Degrading 
to measurement

Resistant. Item difficulty 
increased but topic not 
addressed3

Present Address possible construct irrelevant variation related 
to the nature of science or remove the item from the 
instrument.

13 Poor factor 
loading

Acceptable Resistant. Item dif-
ficulty remained almost 
constant.

Absent Change text in answer option C from “different genes” to 
“different alleles” or “different versions” of the same gene.

18 Poor factor 
loading

Acceptable Not resistant. Item dif-
ficulty decreased.

Absent No specific changes recommended by Kalinowski et al. and 
our study did not find problems with this item.

19 Acceptable fac-
tor loading

Unacceptable. Unproduc-
tive for measurement likely 
due to redundancy with 
item 5.

Not resistant. Item dif-
ficulty decreased.

Absent No improvements recommended

20 Poor factor 
loading

Unacceptable. Unproduc-
tive for measurement.

Resistant. Item difficulty 
increased.

Absent Define seedlings in the introductory paragraph and the 
question stem.

1Finding from Kalinowski et al. 2016
2Finding from the current study
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intended to assess students’ understanding of the role 
of both the environment and genes in generating pheno-
typic variation (see Table S2 for the full item). Notably, 
the phenotype of focus in this item is a behavioral trait 
(i.e., swimming speed), which may invoke different evo-
lutionary reasoning as compared to a physical trait (e.g., 
fin length) (Nehm and Ridgway, 2011). The distribution 
of answer options selected by respondents (Table S4) did 
not meaningfully change from pre- to post-test despite 
explicit instruction about the role of both the environ-
ment and genes in influencing behavioral and physi-
cal phenotypes; Approximately two-thirds of students 
selected the answer option that was designated as cor-
rect by Kalinowski et al. at both the pre- and post-test. 
This “correct” answer specified that the variation aris-
ing from both environmental factors (i.e. nutrition and 
exercise, option B) and genetic factors (i.e., genes, option 
C) contributed to phenotypic variation in a whale spe-
cies (option D, encompassing both Options B and C, 
was therefore designated as correct). However, the text 
of answer option C, “there will be notable differences 
among the whales because each whale has different 
genes”, is inconsistent with normative genetic reason-
ing. Individuals of the same species do not have different 
genes, rather they have different alleles (i.e., versions) of 
the same genes. Therefore, option D is technically incor-
rect as written. We recommend modifying the item to 
state that differences among the bowhead whales arise 
because of different alleles or versions of the same gene. 
The distinction between genes and alleles was explicitly 
addressed in the gateway biology course in which this 
study took place, which may explain why the item was 
resistant to instruction in this population.

Item 20 had a fit index that was deemed unproductive 
for measurement at the pre-test (outfit:1.55). This item 
prompts students to reason about the role of chance in 
evolution, specifically about the extent to which chance 
plays a role in seedling production. This question 
assumes that students know what a seed and a seedling is, 
yet many studies have demonstrated that K-12 students, 
college students, and pre-service teachers hold many 
misconceptions about plants, including topics related to 
seeds, seedlings, and fruit (Wynn et al. 2017; Yangin et 
al. 2014; See Wynn et al. 2017 for a review). Therefore, 
again, this item may be tapping into a construct (e.g., 
plant biology knowledge) other than the one intended by 
the authors and thus may be generating construct-irrele-
vant variation. The fit of this item may have been within 
acceptable levels at the post-test because students were 
introduced to plant biology topics during instruction. To 
improve fit of this item at the pre-test, we recommend 
adding information about seedlings to the introductory 
text and to the item itself.

Advancing the measurement of natural selection 
understanding
The CANS was developed to improve upon the weak-
nesses of previous instruments that aim to measure 
knowledge of natural selection. In particular, the authors 
sought to include more misconceptions in the distrac-
tors, more item forms, and multiple evolutionary contex-
tual features (e.g., trait gain vs. loss, animal vs. a plant). 
However, there are some opportunities for improvement 
within the CANS that go beyond the item-level modifica-
tions recommended above.

First, the authors do not provide a rationale for their 
claim that multiple question forms are needed to accu-
rately assess student understanding of natural selection, 
nor is it evident that the CANS instrument contains the 
necessary item forms to achieve whatever benefit the 
authors may have intended. There certainly are possible 
rationales for why different item forms may be desir-
able. For example, closed response items ask students 
to retrieve knowledge whereas open response items ask 
students to construct knowledge (Tofade et al. 2013). 
However, the CANS is composed of only closed response 
items with misconception distractors. Therefore, if multi-
ple item forms are indeed important to accurately assess 
student understanding of natural selection, more work 
is needed to articulate whether the CANS achieves this 
goal and if not, what kinds of modifications to the instru-
ment might be needed.

Second, the inclusion of various contextual features 
in the CANS instrument is an important advance in the 
measurement of evolution understanding because it 
aligns with student reasoning about evolution. In par-
ticular, the CANS instrument includes two features –trait 
polarity (trait gain vs. loss) and taxon (animal vs. plant)-- 
both of which have been found to impact students’ evo-
lutionary reasoning (Nehm and Ha 2011). However, 
although the authors’ selection of these features appro-
priately reflects their importance for tapping into student 
thinking, the way in which these features were operation-
alized into phenomena within the CANS does not. In 
particular, there are no or too few items that capture each 
of the four phenomena – plant trait gain, plant trait loss, 
animal trait gain, animal trait loss– that can emerge from 
these features, suggesting that the CANS may under-
represent the construct. For a tool to facilitate accurate 
inferences about student thinking, it must intentionally 
tap into that thinking (e.g. NRC, 2001; AERA et al., 2014), 
but the lack of appropriate and balanced representation 
of phenomena within the items suggests that the CANS 
does not appear to effectively achieve this standard. This 
limitation of the CANS is problematic because a neces-
sary step toward improving evolution education is the 
implementation of robust assessment tools that can 
effectively measure the progression from the novice-like 
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(i.e., fragmented) to expert-like (i.e., coherent) knowledge 
structures (Ziadie and Andrews 2018). Unfortunately, the 
unbalanced presentation of phenomena within the CANS 
mirrors a broader weakness in how phenomena are con-
sidered in biology education more generally (e.g., in text-
books, Abreu and Nehm 2024). Future revisions of the 
CANS should aim to achieve more appropriate balance 
and representation of phenomena among items (Table 7).

Patterns of evolution knowledge and learning: 
implications for evolution instruction
Although natural selection is a required topic in K-12 sci-
ence curricula (NGSS Lead States 2013), the results of 
this and other studies (e.g. Andrews et al. 2011; Beggrow 
and Sbeglia 2019; Bishop and Anderson 1990; de Lima 
and Long 2023; Gregory 2009; Harding et al. 2021; Nehm 
and Reilly 2007) show a notable lack of proficiency in this 
topic among undergraduate students. We report that stu-
dents had low pre-test CANS scores in our population 
(average score ∼ 45%), which was similar to Kalinowski et 
al.’s original study (average score ∼ 47%). Both populations 
showed large learning gains from pre- to post-test (our 
study: ∼64% average at post-test; Kalinowski et al.: ∼71% 
average at post-test). We also reported variation in pre-
test knowledge and post-test learning gains by semester, 
with some semesters showing higher pre-test measures 
and higher learning than others. However, these patterns 
do not show evidence of incrementally improved learning 
gains through time, which is not particularly surprising 
due to changes in course modality and implementation 
amidst the COVID-19 pandemic that occurred in the 
middle of the study’s sampling period.

Despite the overall large learning gains, some concept 
categories appear to be more challenging than others. In 
particular, Rasch item difficulties indicated that the muta-
tion items were generally the easiest on average and the 
evolution and selection items were generally the hardest. 
The evolution category, by its nature, requires students to 
integrate multiple evolutionary concepts such as varia-
tion, heredity, and selection, which would be expected to 
be challenging. This finding supports the importance of 
designing curricula that encourages students to practice 
integrating these evolutionary ideas. For example, con-
cept mapping has been widely used in evolution educa-
tion to help students recognize that concepts do not exist 
in isolation (Okebukola 1990).

Finally, there has been a growing suite of literature doc-
umenting the role of student variables in STEM learning 
and career outcomes, which highlights the systemic ineq-
uities experienced by students from historically margin-
alized groups (e.g. Asai 2020; Chang et al. 2014; Estrada 
et al. 2016; Sbeglia and Nehm 2024; Whitcomb and Singh 
2021). In this current study, we used Rasch measures to 
show disparities in evolutionary knowledge by socially 

defined race and biological sex at course entry, but these 
disparities did not impact the rate of evolution learning; 
students from all groups showed comparable learning 
gains throughout the semester. These findings underscore 
that disparities in knowledge did not increase through 
time, but rather were maintained with high magnitudes 
of overall learning. As a necessary consequence of main-
taining disparities, students who began the course with 
more evolution knowledge (in this case, male and White 
students) continued to have the highest Rasch measures 
on the CANS at post-test. These results mirror the pat-
terns reported in Sbeglia and Nehm (2024), but with an 
expanded data set (14 semesters instead of six) and an 
IRT measurement approach (as opposed to Classical Test 
Theory). However, although the mitigation of disparities 
should be the ultimate goal of instructional reform, the 
significance of the pattern reported here –maintenance 
of disparities with a high degree of learning– should not 
be underappreciated. Research suggests that many gate-
way college courses generate low levels of learning and 
may actually exacerbate disparities as evidenced by the 
finding that students from historically excluded com-
munities are disproportionately “weeded out” of STEM 
degree pathways right around the time they are taking 
introductory courses (e.g., Hatfield et al. 2022; Nissen et 
al. 2021; Riegle-Crumb et al. 2019).

Conclusion
Educators require robust measurement instruments 
to assess student knowledge so that they know where 
students begin when they enter courses and how far 
instruction helps them advance. Unfortunately, such 
longitudinal learning data are rarely gathered, with most 
institutions instead focusing on static measures such as 
exam scores and course grades (e.g., Denaro et al. 2022), 
which provides insufficient information about teaching 
efficacy. As one of the few robust instruments available to 
measure the construct of natural selection understand-
ing, the CANS holds great potential to provide some of 
the data needed to generate critical insights about stu-
dent evolution knowledge, learning challenges, and prog-
ress, as well as information about which instructional 
approaches work best and are able to mitigate the notable 
knowledge disparities among students. The findings of 
this study offer insights into student evolutionary rea-
soning as well as tangible ways in which this instrument 
may be improved. In particular, we provide robust evi-
dence that the dimensionality weaknesses of the CANS 
reported by the instrument’s authors are not sufficiently 
addressed by large sample sizes or more robust dimen-
sionality analyses. Rather, there are clear problems with 
several of the instrument’s items, some of which may be 
tapping into additional and unintended constructs. There 
also seems to be limitations in the operationalization of 
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the five evolution content categories, which have sig-
natures of functioning as distinct dimensions but lack 
a sufficient number of items that target a broad enough 
ability range. Finally, although our analysis of the instru-
ment offered insights about student evolution learning 
challenges (e.g., that some content categories were more 
difficult for students than others), the unbalanced pre-
sentation of phenomena among the items is a substantial 
limitation in our ability to better understand the role of 
phenomena in student reasoning. Overall,  the modifica-
tions recommended here could improve the effectiveness 
of the CANS as a tool for assessing students’ conceptual 
understandings of evolution and for helping instructors 
monitor student learning of this core disciplinary idea.
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