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Abstract 

Background: Students’ knowledge of scientific principles of evolution is often inadequate, despite its recognized 
importance for understanding biology. Moreover, difficulties associated with underlying abstract concepts such as 
randomness and probability can hinder successful learning of evolutionary concepts. Studies show that visualizations, 
particularly simulations together with appropriate instructional support, facilitate the learning of abstract concepts. 
Therefore, we have developed interactive, web-based simulation software called EvoSketch in efforts to help learn-
ers grasp the nature and importance of random and probabilistic processes in evolutionary contexts. We applied 
EvoSketch in an intervention study comparing four self-directed study conditions: learning with EvoSketch (1) alone, 
(2) combined with interpretative support, (3) combined with reflective support, and (4) using texts about randomness 
and probability instead of EvoSketch. All conditions received no support from any instructors. Knowledge about evo-
lution as well as randomness and probability in the context of evolution, time-on-task, and perceived cognitive load 
were measured. A sample of 269 German secondary school students (Mage = 15.6 years, SD = 0.6 years) participated in 
the study.

Results: Learners using EvoSketch without additional support obtained higher follow-up test scores regarding their 
knowledge of randomness and probability than those using the text-based approach. However, use of the simula-
tions together with given instructional support (interpretative or reflective) did not increase students’ performance, 
relative to the text-based approach. In addition, no significant between-intervention differences were found concern-
ing the knowledge of evolution, while significant differences between the groups were detected concerning stu-
dents’ perceived cognitive load and time-on-task.

Conclusions: From our findings, we conclude that EvoSketch seems to have a very small positive effect on students’ 
understanding of randomness and probability. Contrary to our expectations, additional self-directed instructional 
support did not improve students’ understanding, probably because it was not necessary to understand EvoSketch 
simulations. When using EvoSketch in the classroom, we recommend increasing the intervention timeframe to several 
sessions and a variety of evolutionary examples for which EvoSketch serves as an underlying framework.
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Introduction
Learners have well-documented problems with under-
standing and learning key scientific concepts like 
energy (e.g., Opitz et  al. 2017; Wernecke et  al. 2018), 
genetics (e.g., Schmiemann et  al. 2017; Venville et  al. 
2005), and evolution (e.g., Gregory 2009; Rector et  al. 
2013; Rosengren et al. 2012). A shared aspect of these 
scientific concepts is that spatial and/or temporal 
dimensions of associated processes and structures 
prevent their direct perception. Hence, they can only 
be understood on an imaginary level, like all concepts 
beyond humans’ perceptual (especially visible) dimen-
sions (Lakoff 1987; Lakoff and Johnson 1980). For 
instance, random mutations in DNA are important 
sources of variation in the key evolutionary process of 
natural selection (Heams 2014). However, these muta-
tions are not visible to the naked human eye, although 
they can be visualized technologically (e.g., using DNA 
sequencing techniques). The consequent lack of possi-
bilities for students to observe these phenomena in eve-
ryday situations may result in misunderstanding of the 
importance of random processes in evolution (Garvin-
Doxas and Klymkowsky 2008). Furthermore, students 
tend to frequently misunderstand general abstract con-
cepts that underlie biological processes like random-
ness and probability (Garvin-Doxas and Klymkowsky 
2008; Mead and Scott 2010). Thus, it may be essential 
to address these underlying abstract concepts to over-
come problems in learning evolution (Tibell and Harms 
2017). Appropriate visualizations such as simulations 
may help in overcoming these limitations and make the 
concepts tangible.

Researchers involved in the EvoVis-project (Evo-
Vis: Challenging Threshold Concepts in Life Science -  
enhancing understanding of evolution by visulaiza-
tion)  have developed interactive, web-based simulation 
software, called EvoSketch, which allows learners to 
explore random and probabilistic phenomena associated 
with the process of natural selection. The software gen-
erates a line (representing a reproducing organism) that 
is replicated by the user for 20 generations. After these 
20 generations, the line will normally be shifted either to 
the right or to the left due to the combination of copying 
error and a selection process.

Our general expectations were that abstracting the 
processes of randomness and probability in the context 
of evolution (by EvoSketch) and actively working with 
EvoSketch will help students to learn these concepts. 
As research has shown that simulations are seldomly 
effective in improving knowledge without instructional 
support (e.g., Eckhardt et  al. 2013; Wouters and van 
Oostendorp 2013), we also expected that additional 
self-directed instructional support may better facilitate 

learners’ self-directed simulation-based learning than a 
learning opportunity without this support.

Background
Learning evolution and the notion of threshold concepts
Over the past decades, a large body of work on evolution 
education has indicated several difficulties for learning 
its essential tenets and examined the diversity of stu-
dents’ alternative conceptions (e.g., Baalmann et al. 2004; 
Beggrow and Nehm 2012; Bishop and Anderson 1990; 
Gregory 2009; Kampourakis and Zogza 2008; Nehm 
and Schonfeld 2008; Opfer et  al. 2012; Shtulman 2006; 
Spindler and Doherty 2009; Yates and Marek 2015). One 
problem is that many words in science lessons such as 
adaptation or fitness also appear in other contexts or eve-
ryday language with slightly different meanings. This can 
confuse students and lead to misused scientific terminol-
ogy (Rector et al. 2013; To et al. 2017). If instructors tar-
get these alternative conceptions and meanings to cause 
cognitive conflicts in students, the students are likely to 
experience conceptual change (e.g., Posner et  al. 1982; 
Sinatra et al. 2008), which means to replace or reorganize 
old conceptions with new (scientifically accurate) ones.

Current research also mentioned learning difficulties 
with those evolutionary concepts that are strongly related 
to underlying abstract concepts like randomness and 
probability, so-called threshold concepts (Mead and Scott 
2010; Ross et al. 2010). Threshold concepts are described 
as conceptual gateways that, once passed, open up a 
new way of thinking and are distinguished from “key” 
or “core” concepts as they are more than mere building 
blocks toward understanding within a discipline (Meyer 
and Land 2003, 2006). Threshold concepts are proposed 
to have eight characteristics: transformative (occasion-
ing a shift in perception and practice), probably irrevers-
ible (unlikely to be forgotten or unlearned), integrative 
(surfacing patterns and connections), often disciplinary 
bounded, troublesome (dealing with counter-intuitive or 
alien knowledge), reconstructive (reconfiguring learners’ 
prior knowledge), discursive (extended language usage), 
and crossing through liminal space (chaotic progress 
across conceptual terrains; Land 2011; Meyer and Land 
2003, 2006; Taylor 2006).

Even though evolution is widely considered as trouble-
some to learn and teach, evolution itself is not suggested 
to be a threshold concept, but rather consists of a web 
of interconnected threshold concepts such as temporal 
scale, spatial scale, probability, and randomness (Ross 
et  al. 2010; Tibell and Harms 2017). Tibell and Harms 
(2017) developed a two-dimensional framework con-
necting evolutionary key concepts with these threshold 
concepts. They propose that a complete understand-
ing of evolution through natural selection requires the 
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development of knowledge concerning both evolutionary 
key and threshold concepts, and the ability to freely navi-
gate through this two-dimensional framework. Moreo-
ver, they claim that the conceptual change theory can 
be connected to the notion of threshold concepts. Thus, 
understanding threshold concepts is a prerequisite for 
conceptual change concerning the understanding of par-
ticular evolutionary concepts; hence changing alternative 
conceptions to scientifically sophisticated ones (Tibell 
and Harms 2017).

In this study, we focused on the threshold concepts of 
randomness and probability, since research reveals that 
students particularly struggle with the importance and 
nature of randomness (Garvin-Doxas and Klymkowsky 
2008; Robson and Burns 2011). The term randomness is 
often used in everyday language to explain that a phe-
nomenon is purposeless as well as without order, predict-
ability or pattern, while scientists use the term to suggest 
unpredictability without referring to purposelessness 
(Buiatti and Longo 2013; Mead and Scott 2010; Wagner 
2012). In fact, the notion of randomness in evolution 
is rather specific by speaking about events (e.g., muta-
tions or genetic drift) that are independent of an organ-
isms’ need or the directionality provided by the process 
of natural selection (Heams 2014; Mead and Scott 2010). 
Thus, mutations are called random because they are 
not directed to an organisms’ adaptation, and it cannot 
be predicted precisely where and when a mutation will 
appear (Heams 2014). Although it is, of course, possi-
ble to predict the likelihood of a mutation occurring at a 
particular site in a specific sequence, this would fit better 
into the concept of probability rather than randomness. 
In fact, the term probability refers to the likelihood of a 
particular outcome in a long run (over multiple events), 
and is assigned a numerical value between zero and one 
(Feller 1968). The closer a probability value is to one, the 
more likely the outcome is. In evolution, natural selec-
tion itself can be described as a probabilistic process, if 
the process of selection is defined as individuals’ prob-
abilities to survive and reproduce in a specific environ-
ment depending on their particular traits (Tibell and 
Harms 2017). Thus, evolution through natural selection 
depends on random genetic mutation leading to a herit-
able variation on which the probabilistic process of selec-
tion can act upon (Andrews et al. 2012; Mix and Masel 
2014). Therefore, a clear understanding of randomness 
and probability is essential for understanding evolution.

Computer simulations as tool to enhance understanding
Computer simulations can be effective tools to handle the 
intangible nature of scientific concepts such as mutations 
(Ainsworth and VanLabeke 2004; Plass et al. 2012). They 
also allow students to visualize processes occurring at 

spatial and temporal scales that are difficult or impossible 
to observe directly (Rutten et al. 2012). Simulations have 
several advantages over reading textbooks or attending 
lectures, because they provide opportunities to explore 
theoretical situations, interact with a simplified version of 
the focal process(es), and/or change time-scales of events 
(van Berkum and de Jong 1991). However, research on 
simulation-based learning has revealed that learners 
may encounter difficulties during the learning process 
for two contrasting reasons (de Jong and van Joolingen 
1998). One is that simulations can involve complex learn-
ing environments, which may overwhelm the learner 
due to the high amount of information that is conveyed 
and must be processed (Wouters and van Oostendorp 
2013). In stark contrast, minimizing guidance (and thus 
reducing the amount of information) may reduce the 
effectiveness of simulation based-learning (Rutten et  al. 
2012). Therefore, instructional support may be needed 
to provide suitable learning environments and overcome 
students’ learning difficulties (Kombartzky et  al. 2010; 
Urhahne and Harms 2006). Several kinds of support may 
be provided in different phases of the learning process in 
efforts to enhance self-directed simulation-based learn-
ing (Zhang et al. 2004):

Interpretative support, given before the interaction, can 
provide scaffolding for learners to activate prior knowl-
edge, and generate appropriate hypotheses. One way to 
provide effective interpretative support is to offer acces-
sible domain-specific background information (Reid et al. 
2003). Research by Leutner (1993) and Lazonder et  al. 
(2010) indicated that the timing of providing these back-
ground information is a critical aspect. Students gained 
higher knowledge outcomes when the domain-specific 
background information were accessible before and dur-
ing the learning process. Then, providing worked exam-
ples can also have positive effects on learning outcomes 
(Spanjers et al. 2011; Yaman et al. 2008). Worked exam-
ples consist of a problem followed by a worked-out solu-
tion, normally presented in a step-by-step format to the 
learner (Renkl 2005). A study by Lee et  al. (2004) state 
that students receiving worked examples scored higher 
in a common assessment, while students working with 
inquiry discovery scored lower.

Experimental support is provided during an interaction 
and can scaffold learners’ process of scientific inquiry 
during simulation-based learning by helping them to 
design verifiable experiments, predict and observe the 
outcomes, and draw appropriate conclusions. Students 
often have inefficient experimentation behaviors (e.g., 
vary too many variables at the same time; de Jong and 
van Joolingen 1998). Effective experimental support for 
knowledge acquisition may include gradual, cumulative 
introductions to handle a simulation and/or requests for 
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learners to predict and describe the outcome (Urhahne 
and Harms 2006; Wang et  al. 2017). Such experimen-
tal prompts are particularly effective for learners with 
low ability and inefficient discovery learning strategies 
(Chang 2017; Veenman and Elshout 1995).

Reflective support is provided after an interaction and 
may foster learners’ integration of their discoveries. Such 
support scaffolds the integration of new information 
arising from discoveries after learners’ interaction with 
a simulation. It involves promoting reflective processes 
(sometimes also connected to metacognitive processes), 
which may be done through a reflective assignment tool 
or opportunities to discuss the results (de Jong and van 
Joolingen 1998; White and Frederiksen 1998). Indeed, 
studies by Eckhardt et al. (2013) and Zhang et al. (2004) 
concluded that prompting students to reflect upon and 
justify their experimental activities and outcomes raise 
their self-awareness and contribute to higher knowledge 
acquisition. Moreover, Chang and Linn (2013) showed 
that criticizing someone else’s experiment can foster stu-
dents to recognize poorly arranged experiments so that 
they can create better experiments on their own, and 
hence knowledge acquisition is enhanced.

Simulations to support students’ understanding 
of evolution and threshold concepts
Although the number of available online educational 
videos increases, they often lack explanations regarding 
underlying threshold concepts or, if mentioned, they are 
communicated orally only (Bohlin et  al. 2017). For evo-
lution education, there are few computer simulations 
available for free such as Evolve (Price and Vaughn 2010), 
Avida-ED (Pennock 2007, 2018), or evolution readiness 
activities (Concord Consortium 2018). The conducted 
research studies indicated positive learning gains after 
using these simulations (Horwitz et  al. 2013; Soderberg 
and Price 2003; Speth et  al. 2009). Nevertheless, they 
were designed to focus on evolutionary (key) concepts 
without focusing on particular underlying threshold con-
cepts such as randomness and probability. For instance, 
the activities of evolution readiness focus on the process 
of (natural) selection, variation within species (with-
out referring to the origin of variation), and inheritance 
of various traits (Horwitz et  al. 2013). This also counts 
for evolve, which is designed to focus on the effects of 
selection, genetic drift, and migration of a population 
over time without modeling mutations or their random 
nature (Soderberg and Price 2003). In contrast, Avida-ED 
includes random mutations occurring in the organisms’ 
genome, while students can also observe evolution in 
action (Speth et al. 2009). Still, the above-mentioned sim-
ulations do not imply the underlying threshold concepts 
such as randomness or probability. In addition, these 

simulations are rather time-consuming (e.g., it takes 
some time to handle the software properly). Particularly 
Avida-ED seems to work well for lectors in universities, 
where students can use this tool across several lab les-
sons, but this simulation software might be too complex 
and time-consuming to be used by teachers in ordinary 
school lessons. Therefore, there is a need for simulation 
software that is easy to handle and visualizes the notion 
of randomness in evolution.

EvoSketch
The simulation software
EvoSketch is a project-developed, interactive, web-based 
simulation software, free of charge and available online 
in an English (EvoSketch English 2018) or German ver-
sion (used in this study; EvoSketch German 2018), that 
allows learners to explore random and probabilistic phe-
nomena associated with the process of natural selection. 
The software (which can be used on various electronic 
devices, such as smartphones, tablets, laptops, and desk-
top computers) generates a line (representing a repro-
ducing organism) that is replicated by the user for 20 
generations.

Every generation consists of four replications of a par-
ent line drawn with a mouse or finger, resulting in four 
offspring lines (Fig.  1). Since copying errors inevitably 
occur while drawing, each replication varies and drifts 
slightly to the right or left of the parent line. These shifts 
in offspring lines represent the concept of the origin of 
variation, and hence random processes in evolution. After 
each generation has been completed by drawing four rep-
lications, one of the four offspring lines is selected (by the 
software) to continue the parent line, and thus represents 
the next reproducing “organism” in the simulation. The 
selected line is closest to a point (indicated by the red dot 
in Fig.  1) indicating optimal fitness for the offspring in 
the surrounding environment. The organism represented 
by the selected line has the highest probability to survive 
and reproduce, and there is selective pressure on the line 
to move towards the point (probabilistic processes). After 
20 generations, the line will normally be shifted either to 
the right or to the left due to the combination of copying 
error and selection.

The idea behind the simulation
The idea for EvoSketch emerged from a video clip focus-
ing on the visualization and importance of randomness 
for natural selection to occur (BBC and Open University 
2011). Although this video clip was easy to understand, 
we wanted to create a hands-on activity (i.e., EvoSketch) 
for students to experience these changes on their own. 
As—according to the theory of embodied cognition 
(Gropengießer 2007; Lakoff 1987; Lakoff and Johnson 
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1980)—repeated action within a specific environment 
(e.g., simulation) helps to create an understanding of 
scientific concepts. We intended to provide users with a 
possibility to realize on their own how even tiny mistakes 
(copying errors) could change the shape of a line across 
several generations. In addition, students have to draw 
four offspring lines in contrast to just one line after the 
other. This should include the aspect of variation across 
offspring and serves as a basic framework for the process 
of natural selection.

Although realistic visualizations may facilitate the rec-
ognition of the visualized process in the real world (e.g., 
Höffler and Leutner 2007), realistic visualizations often 
also entail irrelevant details resulting in distractions of 
the learners from the relevant parts (Dwyer 1976). In 
contrast, nonrealistic or schematic visualizations may 
present such aspects in a way that is easier to realize by 
the learner (Scheiter et  al. 2009). Moreover, decreasing 
the number of dispensable elements in the learning mate-
rial might help in reducing extraneous cognitive load 
(Sweller 1994). Thus, we used a nonrealistic visualization 
approach for EvoSketch to focus on the notion of ran-
domness and probability.

EvoSketch worksheets
In general, users are guided through an EvoSketch 
exercise by an accompanying worksheet (EvoSketch 

worksheet). This worksheet consists of two introductory 
texts explaining random processes (specifically, muta-
tions) in evolution [English version: 132 words; German 
version: 128 words (used in this study)], and the proba-
bilistic process of natural selection [English version: 107 
words; German version: 98 words (used in this study)]. 
Both texts are directly followed by a task asking learners 
to make predictions about the outcome of the simula-
tion, run the simulation and/or observe the outcome, and 
explain the outcome (predict-observe-explain strategy; 
White and Gunstone 1992). The English version of the 
EvoSketch Worksheet is available as Additional file 1.

Research aim
Our general expectations were that abstracting the pro-
cesses of randomness and probability in the context 
of evolution (by EvoSketch) and actively working with 
EvoSketch will help students to learn these concepts. Fur-
ther, additional instructional support may better facilitate 
learners’ self-directed simulation-based learning. Since 
EvoSketch software provides integrated experimental 
support (EvoSketch Worksheet tasks), we addressed the 
potential utility of additional interpretative and reflective 
instructional support in this study. To evaluate the effec-
tiveness of EvoSketch for teaching and learning the roles 
and importance of randomness and probability in evolu-
tionary contexts, we used knowledge test performance 

Fig. 1 Screen displays of an EvoSketch simulation at the beginning (left) and during the 7th generation (right). The main box shows the offspring 
line (black) drawn (with a mouse or finger) from the parent line (grey). After saving the line, it is visualized in one of the four offspring boxes 
(offspring 1–4). To the right of the main box are displayed all offspring lines that have been generated and saved so far. The red framed boxes show 
the offspring selected as parent lines for successive generations. The red dot (only seen after pushing the button show point) serves as a selection 
factor. The offspring line that is nearest to the dot (indicating optimal fitness for the surrounding environment) is selected as the new parent line
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on three occasions, time-on-task, and perceived cogni-
tive load of the learners. We compared pre-, post- and 
follow-up performance scores of students who learned 
with EvoSketch, with and without additional instruc-
tional support (i.e., interpretative or reflective), to those 
of students who used text-based learning of the same 
topics.

Methods
Design and interventions
The main aim of this study was to assess the effective-
ness of EvoSketch for fostering students’ conceptual 
knowledge of randomness, probability, and evolution. An 
additional aim was to identify which type of instructional 
support (if any) most effectively promotes self-directed 
learning with EvoSketch. For these purposes, we used 
an experimental repeated measures design approach 
and assigned students to the following four kinds of self-
directed learning interventions (i.e., no additional sup-
port of any instructor): text-based, simulation-based, 
simulation-based with interpretative support, and simu-
lation-based with reflective support. Students participat-
ing in all four groups received an overview of the topic of 
evolution by means of a short, standardized introductory 
text (cf. Neubrand et al. 2016) to reactivate prior knowl-
edge. The students of each group subsequently individu-
ally addressed the following worksheets and tasks:

Text‑based intervention (hereafter, text)
Textbooks are still a central teaching resource in science 
education, and thus, learning is often organized around 
text-based instructions (McDonald 2016). Learners of 
this intervention group worked with a worksheet (includ-
ing the two introductory EvoSketch Worksheet texts 
mentioned above) and a Powerpoint presentation on the 
roles of randomness (specifically, mutation) and prob-
ability (specifically, selection) in evolution. The presen-
tation included only written texts and pictures (i.e., no 
audio or video components). Afterwards, learners were 
asked to answer three questions regarding the informa-
tion given in the presentation, and two questions regard-
ing evolution. The respective questions as English version 
are available as Additional file 2.

Simulation‑based intervention (hereafter, simulation)
Learners in this group were asked to follow the instruc-
tions of the EvoSketch worksheet (mentioned above in 
section EvoSketch software). They started by reading the 
introductory text on the topic of randomness in evolu-
tion and worked through the first task. During this task, 
they also progressed through the EvoSketch simulations. 
They then read the second text on the role of probabil-
ity in evolution and addressed the second task regarding 

selective pressure (indicated by the distance from the 
red point in their simulation). Learners in this group did 
not receive additional instructional support but had to 
solve on their own how the basic information of random-
ness and probability in evolution (i.e., texts in EvoSketch 
worksheet) and EvoSketch simulations were connected to 
each other.

Simulation‑based intervention with interpretative support 
(hereafter, sim‑interpret)
This learning group was identical to the simulation inter-
vention, except that learners were provided interpretative 
support in the form of a worked example on the roles of 
randomness and probability in evolution before start-
ing to work with the EvoSketch simulations. Clark et al. 
(2011) described a worked example as “a step-by-step 
demonstration of how to perform a task or how to solve 
a problem” (p. 190; see also Atkinson et al. 2000). Thus, 
worked examples can help novices (i.e., non-experts) to 
understand how a formulated problem can be solved 
through introducing the formulated problem, the rel-
evant solution steps, and the final solution (Renkl 2005; 
see also Fig. 2). We used a German worked example cre-
ated by Neubrand et al. (2016) with revised and supple-
mentary sections added in efforts to increase the focus 
on randomness and probability aspects, and to establish 
helpful connections to EvoSketch simulations. Concern-
ing the threshold concepts (i.e., randomness and prob-
ability) and EvoSketch simulations, our worked example 
starts with explaining the conditional factors of evolution 
through natural selection (i.e., origin of variation, indi-
vidual variation, heredity, and differential reproduction 
and survival; see also Fig. 2) with explanations connected 
to EvoSketch simulations  (see Additional file  3 for an 
overview of two example pages). This followed a worked 
example of the peppered moths’ evolution. Βy read-
ing the worked examples, learners already received the 
information of how to connect threshold concepts and 
evolutionary concepts in the context of the EvoSketch 
software as well as in a biological context, before begin-
ning EvoSketch simulations.

Simulation‑based intervention with reflective support 
(hereafter, sim‑reflect)
The last group of learners, the sim-reflect intervention 
group, also worked through the mentioned EvoSketch 
worksheet (including EvoSketch simulations). However, 
in contrast to the simulation and sim-interpret groups, 
learners received additional reflective support in the 
form of reflective questions after each task while working 
with EvoSketch simulations (e.g., “Explain the role of ran-
domness or random processes in the line’s evolution.”). 
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These learners have to describe and interpret their own 
simulation outcomes with respect to the two threshold 
concepts in question.

Participants
The sample consisted of 14 classes from nine com-
prehensive schools (“Gemeinschaftsschulen”) in 
northern Germany. In total, 269 tenth grade stu-
dents aged between 14 and 18  years (M = 15.6  years, 
SD = 0.6 years; 47.19% female) participated in the study. 
Students of each class were randomly assigned to one 
of the four intervention groups: text (n = 43), simula-
tion (n = 70), sim-interpret (n = 79), and sim-reflect 
(n = 77). The study was conducted during regular sci-
ence lessons between November 2016 and March 2017. 
All students were informed that participation was vol-
untary and that their results would not affect their final 
grades. Students had received no formal instruction on 
evolutionary theory before. Nevertheless, we assume 
that they had some fragmentary knowledge on topics 
related to aspects of evolutionary theory (e.g., genet-
ics), although evolutionary theory is not specifically 

included in the German curriculum before the tenth 
grade (Secretariat of the Standing Conference of the 
Ministers of Education and Cultural Affairs of the 
Länder in the Federal Republic of Germany 2005).

Instruments
The instruments we used to study the effectiveness of 
the interventions and potentially influential variables are 
outlined below, while additional descriptions of the test 
instruments and item fit values are available as Addi-
tional file 4.

Randomness and probability test in the context of evolution 
(RaProEvo)
RaProEvo is a test instrument designed to measure stu-
dents’ conceptual knowledge of randomness and prob-
ability in evolutionary contexts (Fiedler et  al. 2017). 
It comprises 21 items (16 multiple-choice, three open 
response and two matching items) that focus on five 
aspects in which randomness and probability play impor-
tant roles: the origin of variation, accidental death, ran-
dom phenomena, the process of natural selection, and 

Fig. 2 The structure of a worked example (left) and the respective steps of the EvoSketch worked example used in the study (right; see also 
Additional file 3 for an overview of two example pages)
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the probability of events. Fiedler et  al. (2017) reported 
that instrument validation was originally performed 
using expert rating, psychometric analyses of university 
student responses using item response theory (Rasch 
modeling), and criterion-related validity measures, and 
that the test had satisfactory reliability. The items of the 
German version are scored dichotomously, and we used 
a reduced set of 19 items (excluded the two matching 
items). The internal consistency (reliability) measured by 
Kuder-Richardson 20 (KR-20) for the data presented in 
this study was moderate ranging from 0.44 and 0.63.

Conceptual inventory of natural selection (CINS)
The CINS is a diagnostic test designed to assess students’ 
understanding of evolution through natural selection 
(Anderson et  al. 2002). It consists of 20 multiple-choice 
questions that focus on common misconceptions per-
taining to 10 key conceptual aspects of natural selection, 
variation, and speciation. The inventory is structured so 
that each of the 10 concepts is assessed once in items 
1–10 (CINS-A) and once again in items 11–20 (CINS-B).
The original test instrument was verified by independ-
ent content experts (i.e., face validity evidence), student 
interviews, and statistical analyses based on classical 
test theory with satisfactory reliability (Anderson et  al. 
2002). A German translation of the CINS was prepared 
for a previous study with university students (Großschedl 
et al. 2014, 2018). The authors used the reverse transla-
tion method to generate a valid translation of the target 
instrument (e.g., Berry 1989; Su and Parham 2002). The 
results indicated that the translated test instrument gen-
erated reliable and valid inferences of university students’ 
evolutionary knowledge. We used the translated CINS-A 
and CINS-B sets of items in the pretests and posttests, 
respectively, to minimize the influence of pretest on post-
test scores and students’ fatigue by reading the same 
items. All items are dichotomously scored, and KR-20 
ranged from 0.23 and 0.40, suggesting that effects in this 
study may be somewhat misestimated due to lower-than-
desired reliability.

General biological content knowledge test (GBCK)
The German GBCK test was designed to measure tenth 
grade students’ existing content knowledge of biologi-
cal topics included in up to tenth grade curricula (such 
as genetics or plant and animal ecology), and consists 
of 19 dichotomously scored items (16 multiple-choice 
items, two matching items, and one open response item; 
Neubrand et  al. 2016). We used the GBCK to control 
for differences in students’ existing prior knowledge of 
the subject and to test if this knowledge is related to the 
learning of randomness, probability, and evolution. The 

results obtained with our students indicate that the test 
has an internal consistency (KR-20) of 0.36, lower than 
the level (0.51) reported by Neubrand et  al. (2016) in 
applications with other samples of tenth grade German 
students.

Students’ general language proficiency (C‑test)
C-tests are designed to measure students’ general lan-
guage proficiency (Eckes and Grotjahn 2006), which may 
affect their performance in other diagnostic test instru-
ments (Härtig et  al. 2015). Therefore, we assessed our 
students’ general German language proficiency using 
C-tests based on two German texts, each including 20 
words with missing letters (Wockenfuß and Raatz 2006). 
Since learners’ ability to read items or texts and produce 
answers is highly relevant in a study such as this, the 
responses were screened for both orthographical and 
grammatical errors. The students’ answers were dichoto-
mously scored, and KR-20 reliability of the test was found 
to be 0.78.

Perceived cognitive load (PCL)
Cognitive load can affect learning (Sweller 1994), but it 
can be reduced by providing instructional support for 
learning with simulations (Leutner 1993). Therefore, stu-
dents’ PCL during the intervention was assessed using an 
adapted 5-point rating scale instrument (Urhahne 2002) 
consisting of eight items that allow differentiation of par-
ticipants’ PCL with a Cronbach’s Alpha of 0.87.

Self‑reported test‑taking effort (effort)
Scores obtained by takers of any test are likely to depend 
on the effort they expend while taking it (Wise and Kong 
2005). Thus, students’ self-reported test-taking effort 
was appraised on one 10-point scale item (Organization 
for Economic Co-operation and Development [OECD] 
2010), after they completed both the pretests and 
posttests.

Procedure
Prior to the intervention (day 1), every student took 
pretests consisting of the targeted randomness, prob-
ability and evolutionary knowledge tests (RaProEvo and 
CINS-A), and instruments designed to capture informa-
tion on the control variables: general biological content 
knowledge (GBCK), language proficiency (C-test), self-
reported test-taking effort (effort), and demographic data 
(i.e., age, sex, and biology grade; see also Fig. 3). Roughly 
2  weeks later (day 2: intervention day) every student of 
each intervention group worked alone through their 
own EvoSketch worksheet on a single laptop. Laptops 
were all of the same types and provided by the Leibniz 
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Institute for Science and Mathematics Education (IPN) 
at Kiel University. Students of all intervention groups 
had 45 min to complete their worksheet tasks (interven-
tion). On average, learners spent 30  min (SD = 7  min; 
range 13–52  min) completing their tasks. Immediately 
after completing their worksheet, students took posttests 
consisting of the knowledge tests (RaProEvo and CINS-
B) and items asking about their effort and PCL during 
the learning process. Roughly eight school weeks later 
(day 3), students took follow-up tests consisting of the 
targeted knowledge tests (RaProEvo and CINS-B). The 
study was conducted by the first author, with support 
from a university student who set-up and removed the 
laptops on the second day. All instruments and materials 
applied in this study were in German language.

Statistical analysis
The unequal sample size of the different groups might 
create problems in terms of homogeneity of variance 
across groups. Therefore, we performed Levene’s test to 
see if our groups have roughly the same variance on the 
investigated variables. Depending on the test result, we 
compared groups based on either Hochberg’s GT2 post 
hoc tests (if Leven’s test p > 0.05) or Games-Howell post 
hoc tests (if Levene’s test p < 0.05; Field 2018).

We analyzed the CINS-B and RaProEvo responses 
with generalized linear mixed models (GLMM) featur-
ing a logistic link function, crossed random effects for 
participants and items, and an additional random effect 
for class (Baayen et al. 2008). The random effects for par-
ticipants and items were included to account for differ-
ences in participants’ general ability and items’ general 
difficulty, respectively. The random effect for class also 
controlled for possible discrepancies in average ability 

between classes. To uncover systematic effects of the 
experimental conditions on the development of students’ 
knowledge, dummy-coded variables for intervention, 
assessment, and their interaction were incorporated as 
fixed effects in the models. The text group served as the 
reference category for intervention, while posttest and 
pretest, respectively, served as the reference category for 
the CINS-B and RaProEvo assessments. This approach 
ensured simultaneous generalization of significant effects 
to new samples of both participants and items (Raaijmak-
ers et al. 1999). As a measure of effect size (i.e., an expres-
sion of how much the respective method is better than 
the alternative one; Furukawa and Leucht 2011), we com-
puted Cohens’ d. Cohens’ d provides information on the 
magnitude of the effect relative to the standard deviation 
(Cohen 1988). For instance, an effect of d = 0.25 would 
mean that the difference is one quarter of a standard 
deviation. The greater the value of Cohens’ d, the greater 
the effect. Cohen (1988) also suggested a rule of thumb 
for interpreting the results with a small effect starting 
at 0.2, a medium effect starting at 0.5, and a large effect 
starting at 0.8. We used the lme4-package (Bates et  al. 
2011) for the statistical computing environment R 3.0.0 
(R Core Team 2013) for all these statistical analyses.

Results
Baseline equivalence
At first, we conducted one-way analyses of variance 
(ANOVAs) to detect possible significant differences 
between intervention groups in pretest performance 
(i.e., CINS-A and RaProEvo scores) or the control vari-
ables (demographic variables and either C-test or GBCK 
scores). Values of these variables for each of the groups 
are listed in Table 1. Levene’s test of each variable showed 

Fig. 3 Overview of the study procedure and used test instruments
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that the four groups had statistically equivalent variances 
(Fs < 1.96, ps > 0.121), and ANOVA results indicated that 
the groups do not significantly differ in any of the rel-
evant variables (Welch’s Fs < 2.66, ps > 0.051). Thus, the 
random assignment of learners to the four intervention 
groups caused no apparent bias in terms of any of these 
variables.

Intervention effects on CINS‑B and RaProEvo scores
CINS‑B
As already stated, students’ responses to the CINS-B 
items were analyzed with a generalized linear mixed 
model featuring a logistic link function, crossed random 
effects for participants and items, and a random effect for 
class. Dummy-coded variables for intervention (with text 
as the reference category) and assessment (with posttest 

Table 1 Control variables and pretest performance scores (means with standard deviations; minimum and maximum 
in parentheses)

GBCK general biological content knowledge, C-test general language proficiency, RaProEvo conceptual knowledge of randomness and probability in evolutionary 
context, CINS-A conceptual inventory of natural selection
a The total sample is smaller than N = 269 because 25 participants were absent during the pretests
b Grades are measured within the possible range of 1 (good performance) and 6 (poor performance)

Intervention Totala (n = 244)

Text (n = 39) Simulation (n = 66) Sim‑interpret (n = 70) Sim‑reflect (n = 69)

Age 15.39 ± 0.55 (15–17) 15.62 ± 0.74 (14–18) 15.57 ± 0.61 (15–17) 15.65 ± 0.66 (15–17) 15.58 ± 0.65 (14–18)

Biology  gradeb 2.51 ± 0.73 (1–4) 2.61 ± 0.91 (1–5) 2.77 ± 0.75 (1–5) 2.77 ± 0.75 (1–5) 2.65 ± 0.85 (1–5)

C-test 13.05 ± 2.88 (8–20) 11.58 ± 3.34 (2–18) 12.90 ± 2.78 (7–17) 12.74 ± 2.77 (7–18) 12.52 ± 2.99 (2–20)

GBCK 6.41 ± 2.61 (2–11) 5.86 ± 2.31 (0–12) 6.23 ± 2.31 (1–12) 5.90 ± 2.10 (2–10) 6.07 ± 2.30 (0–12)

RaProEvo 10.08 ± 2.51 (3–15) 9.29 ± 2.92 (3–18) 9.93 ± 2.57 (3–17) 9.57 ± 2.78 (3–18) 9.68 ± 2.72 (3–18)

CINS-A 3.51 ± 1.68 (0–7) 3.45 ± 1.84 (0–10) 3.90 ± 1.87 (0–9) 3.84 ± 1.78 (1–9) 3.70 ± 1.81 (0–10)

Table 2 Intervention effects on CINS-B and RaProEvo scores

CINS-A/B pretest/posttest of the conceptual inventory of natural selection, RaProEvo pretest of conceptual knowledge of randomness and probability in evolutionary 
context

* p < 0.05, *** p < 0.001

Effects CINS‑B RaProEvo

b SE Cohen’s d b SE Cohen’s d

Fixed

 Intercept − 1.16*** 0.22 0.65 0.10 0.26 0.05

 Simulation 0.14 0.15 0.08 − 0.21 0.15 0.12

 Sim-interpret − 0.01 0.15 0.00 − 0.01 0.15 0.01

 Sim-reflect − 0.02 0.15 0.01 − 0.14 0.15 0.08

 Post – – − 0.09 0.11 0.05

 Follow-up 0.25 0.16 0.14 − 0.04 0.12 0.02

 CINS-A 0.12*** 0.02 0.06 – –

 Simulation*post – – 0.04 0.15 0.02

 Sim-interpret*post – – − 0.04 0.14 0.02

 Sim-reflect*post – – 0.09 0.14 0.05

 Simulation*follow-up − 0.25 0.20 0.06 0.34* 0.15 0.19

 Sim-interpret*follow-up − 0.09 0.19 0.14 0.09 0.15 0.05

 Sim-reflect*follow-up − 0.01 0.20 0.05 0.16 0.15 0.09

Var SD Var SD

Random

 Participants(intercept) 0.08 0.28 0.30 0.55

 Items(intercept) 0.28 0.52 0.94 0.97

 Class(intercept) 0.02 0.13 0.05 0.23
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as the reference category) were included as fixed effects. 
Moreover, a fixed effect for students’ CINS-A pretest 
performance was included as a covariate. A main effect 
for CINS-A (b = 0.12, SE = 0.02, p < 0.001, d = 0.06) was 
detected, but no other significant fixed effects (Table 2). 
No significant differences were detected, at posttest or 
follow-up, between intervention groups in understanding 
of evolution through natural selection. The inclusion of 
the GBCK results, C-test scores, and time-on-task data 
as further covariates did not alter this pattern of results.

RaProEvo
Students’ RaProEvo performance was explored with a 
similar model, but with pretest as the reference category 
for assessment. No significant main effects of interven-
tion were detected, indicating that there were no sub-
stantial differences between intervention groups in 
conceptual knowledge of randomness and probability in 
evolutionary context at the outset of the study (Table 2). 
Similarly, there was no significant general improvement 
in students’ performance across assessments. However, a 
significant interaction revealed that students in the simu-
lation group outperformed students in the text group at 
follow-up, b = 0.34, SE = 0.15, p = 0.024, d = 0.19. Incor-
poration of the GBCK results, C-test scores, and time-
on-task data as covariates did not change this pattern of 
results.

Time‑on‑task
Differences in the time learners spend on tasks in their 
interventions may influence learners’ knowledge acqui-
sition. Levene’s test indicated statistically inequivalent 
variances of the four groups regarding time-on-task, 
F(3, 265) = 3.93, p = 0.009. In addition, one-way ANOVA 
indicated a significant effect of intervention on time-on-
task: Welch’s F(3, 132.69) = 26.74, p < 0.001. Games-How-
ell post hoc tests revealed that learners in the text group 
(M = 30  min, SD = 6  min, n = 43) worked significantly 
longer than learners in the simulation intervention group 
(M = 26 min, SD = 5 min, n = 70, p = 0.006, d = 0.74). Fur-
thermore, simulation intervention learners spent signifi-
cantly less time with the material than the sim-interpret 
(M = 33 min, SD = 7 min, n = 79, p < 0.001, d = 1.14) and 
sim-reflect intervention (M = 34 min, SD = 7 min, n = 77, 
p < 0.001, d = 1.31) learners.

Perceived cognitive load (PCL)
Since cognitive load can influence learners’ knowl-
edge acquisition (Sweller 1994), the students’ PCL was 
measured directly after each intervention. Levene’s test 
showed that the four groups had statistically equiva-
lent variances on PCL, F(3, 265) = 0.66, p = 0.576, while 
one-way ANOVA indicated significant differences 

between intervention groups: Welch’s F(3, 134.55) = 5.40, 
p = 0.002. Hochberg’s GT2 post hoc tests showed that 
average PCL was higher in the text intervention group 
(M = 1.31, SD = 0.53, n = 43) than in the simulation 
(M = 0.92, SD = 0.63, n = 70, p = 0.004, d = 0.66) and 
sim-reflect intervention (M = 0.95, SD = 0.58, n = 77, 
p = 0.008, d = 0.64) groups. However, no significant dif-
ferences in this respect between the other pairs of inter-
ventions were detected (in all remaining cases, p > 0.05; 
PCL sim-interpret: M = 1.08, SD = 0.60, n = 79).

Self‑reported test‑taking effort
Test performance may also depend on the test-taking 
effort, as low effort is likely to result in test scores under-
representing learners’ true level of knowledge (Wise and 
Kong 2005). We applied repeated-measures ANOVA to 
investigate differences between intervention groups in 
self-reported test-taking effort. Levene’s test showed that 
the four groups had statistically equivalent variances on 
pretest effort, F(3, 229) = 1.75, p = 0.158, but inequivalent 
variances on posttest effort, F(3, 229) = 4.08, p = 0.008. 
The results of the repeated-measures ANOVA showed a 
significant main effect of self-reported test-taking effort: 
F(1, 229) = 30.86, p < 0.001. Repeated contrasts also 
revealed that learners self-reportedly spent significantly 
more effort in the pretests (M = 7.03, SD = 1.84) than 
in the posttests (M = 6.19, SD = 2.07, n = 233; p < 0.001, 
d = 0.40). Nevertheless, no significant main effect of 
group or interaction effect between group and effort was 
detected: F(3, 229) = 1.49, p = 0.218, and F(3, 229) = 0.46, 
p = 0.710, respectively.

In addition, Spearman’s correlation coefficients were 
calculated to assess relationships between effort (pre- 
and posttest) and test performance (RaProEvo and 
CINS-A/B scores). A significant positive association was 
detected between pretest effort and RaProEvo pretest 
performance (rs = 0.14, p = 0.031, n = 236). Significant 
positive relationships were also found between posttest 
effort and both RaProEvo and CINS-B posttest scores 
(rs = 0.18, p = 0.007, n = 240, and rs = 0.14, p = 0.028, 
n = 240, respectively).

Discussion
The main aim of this study was to assess the effective-
ness of EvoSketch simulations for improving students’ 
knowledge about randomness and probability in evo-
lutionary contexts, and their evolutionary knowledge. 
Since instructional support may reportedly improve the 
effectiveness of simulations, and EvoSketch Worksheets 
provide experimental support, we also examined and 
compared effects of additional interpretative and reflec-
tive support (worked example and reflective questions, 
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respectively) on self-directed learning with EvoSketch 
simulations.

We found that the overall mean posttest scores were 
lower, but mean follow-up test scores were higher than 
pretest scores. Concerning RaProEvo learning gains 
from the pretest to the follow-up test (not posttest), find-
ings indicate that learners in the simulation intervention 
group (but not those in the simulation with additional 
self-directed support groups) acquired more knowledge 
than text-based learners. However, this positive effect 
was very small (i.e., Cohens’ d of 0.19), which means 
that the difference between the simulation group and 
the text group was only one-fifth of a standard deviation. 
Expressed in other words (i.e., number needed to treat; 
Furukawa and Leucht 2011), it would mean that if 100 
participants worked with EvoSketch (without additional 
self-directed support), only six more of them would have 
a greater RaProEvo score compared to students who only 
received the text material. Concerning the CINS scores, 
we could not find differences between the intervention 
groups. In contrast, we detected significant differences 
between intervention groups in both time spent on the 
material and PCL. Learners in the simulation groups 
with additional support (sim-interpret and sim-reflect) 
worked significantly longer on their tasks than learners 
in the simulation group (without additional support). 
Still, these groups did not differ in PCL. Students in the 
text group spent an intermediate amount of time on 
their worksheets but reported a significantly higher PCL 
than students of the simulation and sim-reflect groups.

The capacity of humans’ working memory is limited 
and learning is likely to be hindered when tasks require 
too much cognitive load (Chandler and Sweller 1991; 
Paas and Sweller 2014; Sweller 1988). Thus, too much 
(new) information that is not aligned with the learner’s 
prior knowledge, as well as inadequately designed learn-
ing material, can result in a high load of the working 
memory, which is detrimental for the learning process 
(de Jong 2010; Kirschner et  al. 2006). The high PCL of 
the text group could have resulted from aspects of the 
intervention material. These students were not only sup-
ported with the two introductory texts of the EvoSketch 
Worksheet, but also received a text as Powerpoint pres-
entation, to which three questions regarding topics cov-
ered in this text and two questions regarding evolution in 
a broader sense had to be answered. These students had 
to understand the concepts of randomness and prob-
ability in evolution based on the information given in the 
text only. In other words, they had no supporting simu-
lation that visualized these concepts in connection with 
the evolutionary concept of variation or the relevance 
of random processes (i.e., mutations) for the probabilis-
tic process of natural selection. Consequently, text-based 

learners had to build up a simulation of these processes 
in their mind. This may have caused them to perceive a 
higher cognitive load than students of the other interven-
tion groups.

Based on the performance tests, our participating sec-
ondary school students had on average a low (i.e., CINS) 
to medium (i.e., RaProEvo) test score, which can be inter-
preted as low to medium prior knowledge of the focal 
topics. This is potentially problematic as learners may 
be overwhelmed by the high amounts of abstract infor-
mation conveyed in the simulations (Rutten et  al. 2012; 
Wouters and van Oostendorp 2013). The slight improve-
ments in delayed knowledge acquisition of simulation 
groups, relative to the text-based learners, may indicate 
that EvoSketch is probably not too abstract (nonrealistic) 
for fostering learners’ knowledge about randomness and 
probability, but it does not seem to foster broad evolu-
tionary knowledge in just one school lesson.

The limited duration of the learning session (the inter-
vention time was roughly 45  min) may have affected 
several of the performance results, particularly CINS 
scores. There are a few studies indicating that learn-
ing evolutionary concepts in very short time (i.e., one 
or two lessons or hours) can result in higher knowledge 
(e.g., Beardsley et al. 2012; Bohlin 2017; Lee et al. 2017; 
Yamanoi and Iwasaki 2015). However, evolution educa-
tion research also shows that the theory of evolution 
presents severe problems to learners, which have not 
been effectively solved by teaching strategies applied to 
date (e.g., Kampourakis and Zogza 2008; Rosengren et al. 
2012). Introducing abstract, counter-intuitive concepts 
(i.e., randomness) in addition to these problems (particu-
larly in a brief intervention) may partly explain the lack of 
learning gains directly after the intervention and the gen-
erally weak between-intervention differences in students’ 
learning.

Moreover, additional instructional support in either 
the interpretative or the reflective forms did not lead 
to improvements in the performance (i.e., RaProEvo 
and CINS) of simulation-based learners relative to text 
group learners. One explanation might be that students 
perceived the additional material similar to normal text-
book work (i.e., reading the worked example or answer-
ing the reflective questions on paper), which might have 
lowered the effect of self-directed learning with a simula-
tion. Maybe the results could have been different if the 
additional supports were integrated as computer-based 
exercises.

Another factor for our lack of learning gains may be 
tracked back to the expertise reversal effect (Kalyuga 
et  al. 2003). The effect explains why some instructional 
support may be highly effective for learners with low 
knowledge, while losing its effectiveness and resulting 
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in negative learning consequences for high knowledge 
learners, and vice versa (e.g., Kalyuga et  al. 2003; Scott 
and Schwartz 2007). For instance, additional instruc-
tional support (e.g., worked example) may have been triv-
ial for students with high prior knowledge (high pretest 
scores; see also maximum values in Table  1) to under-
stand how threshold concepts and evolutionary concepts 
are connected in EvoSketch simulations, and even might 
have caused negative learning results for these students.

At last, the high amount of additional information pro-
vided in these interventions could have overwhelmed the 
students, deterred learners with low interest, and—in 
turn—reduced their motivation (Amabile et al. 1994; Pin-
trich and Schrauben 1992). Participants did not receive 
any credit for their test performance, and their results did 
not influence their final grade. Thus, their inherent learn-
ing motivation was likely correlated with motivation to 
address the large amount of material (e.g., worked exam-
ple, large numbers of test items), thereby introducing a 
substantial random behavioral response factor in the 
posttest results (e.g., Meijer 2003). Accordingly, results 
of correlation analyses indicated a significant positive 
correlation between self-reported test-taking effort and 
posttest scores. Moreover, students reported significantly 
lower effort in the posttests than in the pretests, but no 
differences were detected among the groups, which may 
explain the lack of learning gains directly after the inter-
vention. Since we did not ask the students a third time for 
their self-directed test-taking effort, we cannot clarify the 
connection of test performance and effort in the follow-
up testing.

Limitations
This study is the first experimental approach to (1) exam-
ine the relationships of threshold concepts (i.e., random-
ness and probability) and evolution knowledge, and (2) 
foster the understanding of these concepts by use of an 
abstract visualization (i.e., EvoSketch). Visualizing ran-
dom and probabilistic processes through EvoSketch 
seems to have a very small positive effect on students’ 
conceptual knowledge of randomness and probability in 
evolutionary contexts, although it is unclear if this is due 
to higher understanding or rather an aspect of variability 
in the sample.

Nevertheless, our statistical analyses are limited by 
the lower than desired reliability of the knowledge test 
instruments (RaProEvo, CINS, and GBCK). The GBCK 
test’s reliability was not expected to be high because 
it covers a large range of biological topics (Neubrand 
et al. 2016), but its internal consistency was unsatisfac-
torily low. The internal consistency of the CINS instru-
ment was similarly low, possibly because the tenth 

grade students had not received formal instruction on 
evolutionary theory before the intervention and may 
have been overstrained by the complexity of the pre-
sented items. In contrast, the internal consistency of 
the RaProEvo instrument was higher, but still not sat-
isfactory. In addition, some of the test instruments (i.e., 
RaProEvo or CINS) were originally developed and vali-
dated to measure post-secondary students’ knowledge 
of the respective context. However, at least the RaPro-
Evo seems to be applicable to be used with secondary 
school students based on the range of item difficulty 
(see Additional file 4).

Another factor that potentially has affected the results 
is the limited duration of the learning session. We 
worked with tenth grade school students in several par-
ticipating schools. The respective class teachers could 
decide on their own if they wanted their class (or classes) 
to participate or not. Since the research was performed 
during regular school lessons (depending on the particu-
lar school a lesson was between 45 and 60 min), we were 
unable to extend the research to more than the respec-
tive three days (i.e., five lessons including the time of the 
tests). Concerning this, the timeframe for the interven-
tion was highly restricted. Nevertheless, studies indicated 
that even short learning periods could improve student’s 
knowledge acquisition (e.g., Bohlin 2017; Eckhardt et al. 
2013; Yamanoi and Iwasaki 2015). The timeframe should 
have been fine for investigating the effectiveness of 
EvoSketch simulations and the respective self-directed 
instructional support.

At last, in this study, we only focused on the effect of 
self-directed learning and did not incorporate teachers’ 
support. Although teachers can be powerful for students’ 
learning (e.g., Hattie 2009), students’ performance is also 
likely to be influenced by teacher’s professional knowl-
edge (e.g., Mahler et  al. 2017; Sadler et  al. 2013). Our 
first step was to examine if EvoSketch can be effective 
on its own (without any teachers’ support), but including 
teacher’s support in further studies (e.g., in form of class 
discussions or one-by-one support) may be helpful for 
students’ understanding of abstract threshold concepts, 
particularly directly after working with EvoSketch.

Implications and future research
Our findings may be useful for further research on how 
to visualize randomness and probability in evolution and 
for implementing EvoSketch in school sessions. Ade-
quate knowledge of evolutionary concepts, and particu-
larly related abstract concepts such as randomness and 
probability, is essential for students to critically address 
numerous issues associated with their environment and 
everyday life.
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Thus, when using EvoSketch in the classroom, we rec-
ommend increasing the intervention timeframe to incor-
porate interventions on several days or weeks to foster 
students’ understanding of randomness and probabil-
ity in the context of evolution. Moreover, working with 
EvoSketch on a variety of real evolutionary examples 
(e.g., resistance in bacteria, peppered moth evolution), 
may help novices to realize that the same processes are 
relevant in different organisms to evolve, and are based 
on the same evolutionary principles. Studies of Nehm 
and Ridgway (2011), and Kampourakis and Zogza (2009) 
indicate that novices’ explanations are often based on 
concrete surface features (e.g., running speed of cheetah) 
and have multiple explanatory models, while experts’ 
explanations are based directly on the main domain 
principles (e.g., natural selection). Therefore, using an 
underlying framework (e.g., EvoSketch) and explaining 
different real case studies based hereupon might help to 
develop a coherent understanding of the respective con-
cepts across case studies.

Additionally, deep learning is often more strongly sup-
ported by small group learning than individual learning 
(Dori and Belcher 2005; Springer et al. 1999). EvoSketch 
could be used in group settings with each individual 
working initially on their own and subsequently dis-
cuss observations in the group. Such discussions could 
also be extended to class discussions with the teacher. 
Learners with little prior knowledge could receive addi-
tional instructional support through worked examples or 
reflective prompts.

This study was only a first step to examine how the 
understanding of abstract concepts may be fostered by 
the use of visualizations. In future studies, we intend 
confirming whether learners apply a better understand-
ing when (1) using an abstracted example in contrast to 
using a real example, and (2) students received additional 
teacher support. Moreover, we also want to gather more 
qualitative data on how students actually use EvoSketch 
simulations and how this changes their experience by 
using eye-tracking methods, think-aloud protocols, and 
interviews afterwards. We hope to increase the research 
in evolution education by focusing on understanding 
underlying abstract concepts such as randomness and 
probability.

Conclusions
We developed the simulation software EvoSketch to 
allow learners to explore—in a non-realistic way—ran-
dom and probabilistic phenomena associated with the 
process of natural selection. Although the simulation 
group received higher knowledge gains in the follow-up 
test than the comparison text group, the effect size was 

very small. Moreover, the additional self-directed learn-
ing supports (i.e., worked example or reflective ques-
tions) did not seem to improve students’ knowledge. In 
fact, there was no immediate learning gain directly after 
the interventions. Our suggestion is that if students were 
able to work on EvoSketch for several rounds (i.e., going 
through the 20 generations more than once), and play-
ing with the (new) knowledge they have (e.g., drawing 
known inaccurate lines while the fitness value influences 
the selection process), they would probably gain a more 
intuitive understanding of the random and probabilistic 
processes. Additionally, incorporate teacher’s support 
may increase students’ learning.
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