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Abstract 

Background: Concept inventories (CIs) are commonly used tools for assessing student understanding of scientific 
and naive ideas, yet the body of empirical evidence supporting the inferences drawn from CI scores is often limited 
in scope and remains deeply rooted in Classical Test Theory. The Genetic Drift Inventory (GeDI) is a relatively new CI 
designed for use in diagnosing undergraduate students’ conceptual understanding of genetic drift. This study seeks to 
expand the sources of evidence examining validity and reliability inferences produced by GeDI scores. Specifically, our 
research focused on: (1) GeDI instrument and item properties as revealed by Rasch modeling, (2) item order effects on 
response patterns, and (3) generalization to a new geographic sample.

Methods: A sample of 336 advanced undergraduate biology majors completed four equivalent versions of the GeDI. 
Rasch analysis was used to examine instrument dimensionality, item fit properties, person and item reliability, and 
alignment of item difficulty with person ability. To investigate whether the presentation order of GeDI item suites 
influenced overall student performance, scores were compared from randomly assigned, equivalent test versions 
varying in item-suite presentation order. Scores from this sample were also compared with scores from similar but 
geographically distinct samples to examine generalizability of score patterns.

Results: Rasch analysis indicated that the GeDI was unidimensional, with good fit to the Rasch model. Items had 
high reliability and were well matched to the ability of the sample. Person reliability was low. Rotating the GeDI’s item 
suites had no significant impact on scores, suggesting each suite functioned independently. Scores from our new 
sample from the NE United States were comparable to those from other geographic regions and provide evidence 
in support of score generalizability. Overall, most instrument features were robust. Suggestions for improvement 
include: (1) incorporation of additional items to differentiate high-ability persons and improve person reliability, and 
(2) re-examination of items with redundant or low difficulty levels.

Conclusions: Rasch analyses of the GEDI instrument and item order effects expand the range and quality of evi-
dence in support of validity claims and illustrate changes that are likely to improve the quality of this (and other) 
evolution education instruments.
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Introduction
The accurate measurement of student understanding 
is an essential feature of educational practice because 
it provides evidence-based insights into students’ con-
ceptual ecologies, guides learning progression develop-
ment, and permits empirical evaluation of the efficacy 
of alternative educational interventions (National 
Research Council 2001). A diverse array of assessment 
tools and types have been developed for evolution 
educators (Table  1). They range from static, multiple-
choice formats (e.g., Price et  al. 2014) to open-ended 
questions whose answers can be scored by computers 
(e.g., Moharreri et al. 2014). Available assessment tools 
cover many different evolutionary concepts, including 
natural selection, evo-devo, genetic drift, and macro-
evolution. These assessments vary significantly in the 
types of information that they can reveal about student 
understanding, in the situations in which they are most 
appropriately implemented, and in the robustness of 
the inferences that they are able to support (American 
Association for the Advancement of Science (AAAS) 
2011; American Educational Research Association, 
American Psychological Association, and National 

Council on Measurement in Education (AERA, APA, 
NCME) 2014; Nehm and Schonfeld 2008).

Concept inventories (CIs) are a type of research-
based educational assessment designed to rapidly reveal 
(through easy administration and scoring) students’ pref-
erences for normative (i.e., scientifically accurate) or non-
normative (e.g., preconceptions, misconceptions) facets 
of core ideas (e.g., natural selection, genetic drift) (Nehm 
and Haertig 2012, p. 56–57). Although CIs have become 
indispensable tools for assessing undergraduate students’ 
conceptual understandings of many core ideas in the sci-
ences (e.g., force and motion, chemical bonding), few 
have been carefully evaluated in terms of (1) the forms 
of validity outlined in the Standards for Educational and 
Psychological Testing (American Educational Research 
Association, American Psychological Association, and 
National Council on Measurement in Education (AERA, 
APA, NCME) 2014), (2) item order effects and associated 
response biases (Federer et  al. 2015, 2016), or (3) item 
properties using ratio-scaled data (generated by Rasch 
or Item Response Theory [IRT] analyses; Boone, Staver 
and Yale 2014). Consequently, validity evidence—that is, 
evidence that the measures derived from CIs accurately 

Table 1 Evolution education instruments measuring knowledge of  evolutionary processes: potential to  elicit scientific 
and naive ideas about adaptive and non-adaptive evolution

N.B. Readers interested in genetics-focused concept inventories that contain individual items dealing with non-adaptive change may wish to consult Price et al. (2014)
a  MCMultiple choice, OR Open response, TF True–false
b  NS-S natural selection-scientific ideas, NS-N natural selection-naive ideas, GD-S genetic drift-scientific ideas, GD-N genetic drift-naive ideas; “Intended” indicates that 
the instrument intentionally targeted ideas of this type
c  Bishop and Anderson’s instrument includes 2 OR, 3 MC with OR explanation, and 1 question about belief in evolution
d  Open response format affords the possibility of capturing reasoning about genetic drift, although, in line with instrument’s intent, scoring guide focuses on natural 
selection
e  Includes one question (item 20) asking whether chance plays a role in whether a cactus will produce a seedling
f  MC items address macroevolution. OR item asks student to explain how two species might have arisen from one. Authors state that item does not address 
speciation by means beyond natural selection, though they include a student response mentioning genetic drift

Instrument Formata and target population Conceptions  measuredb

NS-S NS-N GD-S GD-N

Bishop and Anderson’s diagnostic instrument 
(Bishop and Anderson 1990)

Combination MC and  ORc: undergraduates 
(introductory biology non-majors)

Intended Intended Possibled Possibled

Concept Inventory of Natural Selection (CINS) 
(Anderson, Fisher and Norman 2002)

20 MC: undergraduates Intended Intended

Assessing Contextual Reasoning about Natu-
ral Selection (ACORNS) (Nehm et al. 2012)

Flexible number OR: undergraduates Intended Intended Possibled Possibled

Conceptual Assessment of Natural Selection 
(CANS) (Kalinowski et al. 2016)

24 MC: undergraduates (introductory biology 
majors)

Intended Intended e

Daphne Assessment for Natural Selection 
(DANS) (Furtak et al. 2014)

26 MC: high school Intended Intended

Genetic Drift Inventory (GeDI) (Price et al. 
2014)

22 TF: undergraduates (upper-division biol-
ogy majors)

Intended Intended Intended

Evo-devo concept inventory (Perez et al. 
2013)

11 MC: undergraduates Intended Intended

Measure of understanding of macroevolution 
(MUM) (Nadelson and Southerland 2009)

27 MC and 1 OR: undergraduate OR:  possiblef OR:  possiblef OR:  possiblef OR:  possiblef
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reflect the construct of interest–remains limited. Given 
the centrality of accurate measurement to evidence-based 
educational practices, evolution education research must 
include the study of instrument quality. Such studies help 
to support instructional decisions firmly rooted in high-
quality evidence.

Given the paucity of work on evolution education 
instrument quality (Nehm et  al. 2010), our study exam-
ines the psychometric properties of a relatively new evo-
lution education instrument known as the Genetic Drift 
Inventory (GeDI). As the only assessment instrument 
focusing on non-adaptive evolutionary mechanisms, the 
GeDI fills a crucial gap in available evolution education 
instruments and holds potential to offer insights into a 
much neglected area of student thinking about evolution. 
To date, validity evidence for the GeDI remains limited 
to Classical Test Theory frameworks (Price et  al. 2014), 
despite the availability of more robust IRT and Rasch 
approaches (Boone et al. 2014). In order to build a larger 
body of validity evidence in support of evolution educa-
tion assessments in general, and to empirically exam-
ine the strengths and weaknesses of the inferences that 
may be drawn from GeDI scores in particular, our study 
explores three research questions: (1) How well does the 
GeDI function when studied within the context of the 
Rasch model? (2) Does the presentation order of instru-
ment scenarios (and associated item suites) impact meas-
ures of student understanding? And (3) Does the GeDI 
measure student knowledge in a manner that is gener-
alizable across geographic regions of the United States 
(e.g., Northeast, Southeast, and Midwest) when adminis-
tered to students of similar academic backgrounds? Prior 
to discussing our psychometric approach, we begin with 
a brief review of the position of genetic drift within evo-
lution education, continue with an overview of Classical 
Test Theory and Item Response Theory frameworks for 
instrument evaluation, and end with a summary of GeDI 
instrument properties and prior validation work relative 
to these frameworks.

Genetic drift and evolution education
A major goal of science education is to promote student 
understanding that is aligned with expert conceptions, 
practices, and dispositions. The scientific community 
recognizes both adaptive and nonadaptive causes of evo-
lutionary change (reviewed in Beggrow and Nehm 2012; 
Masel 2012). While standards and textbooks vary in the 
extent to which they address non-adaptive evolutionary 
processes, genetic drift is recognized foremost among 
the various-non adaptive evolutionary factors (Beggrow 
and Nehm 2012; Price and Perez 2016). Genetic drift 
is included in college textbooks for biology majors 
(Beggrow and Nehm 2012), is a recommended topic in 

undergraduate biology curricula, and is also taught in 
advanced placement (AP) Biology (reviewed in Price 
and Perez 2016; The College Board 2015). International 
Baccalaureate (IB) Biology (a popular alternative to AP 
biology), however, fails to mention non-adaptive mecha-
nisms for evolution (International Baccalaureate Organi-
zation 2014).

At the introductory high school biology level, the 
Next Generation Science Standards (NGSS Lead States 
2013) also omit non-adaptive evolutionary mechanisms. 
Recent editions of popular high school textbooks, how-
ever, continue to include genetic drift (e.g., Miller and 
Levine 2017; Nowicki 2017), leaving the option to cover 
this topic in the hands of individual teachers, schools, 
or districts. While genetic drift is commonly taught in 
evolution courses (e.g., Masel 2012) or within evolution 
units of biology survey courses (e.g., The College Board 
2015; Masel 2012; Urry et al. 2017), it may also be taught 
in genetics courses (e.g., Masel 2012; Stony Brook Uni-
versity 2017, p. 49). Overall, while there is consensus 
that nonadaptive causes of evolution are an essential 
component of biology education, inconsistent attention 
to genetic drift (and other non-adaptive evolutionary 
concepts) in high-school and college curricula makes it 
difficult to determine the extent to which students are 
exposed to instruction on non-adaptive evolutionary 
processes as well as the degree to which they are able 
to integrate it into their mental models of evolutionary 
change (Nehm 2018). The genetic drift CI was developed 
to address the latter issue and is an important advance in 
evolution assessment.

The Genetic Drift Inventory
The Genetic Drift Inventory (known as the GeDI; Price 
et al. 2014) is a 22-item CI designed to measure advanced 
undergraduate biology majors’ understanding of four 
key concepts and six alternative conceptions (or “mis-
conceptions”) of genetic drift. To date, it is the only con-
cept inventory to focus on non-adaptive evolutionary 
processes (Table  1). The GeDI features four scenarios, 
each followed by one to three question stems contain-
ing a number of associated agree-disagree statements 
(i.e., items; see Table  2 for details). The 22 items target 
an individual key concept (15 items) or a misconception 
(7 items). Misconceptions targeted by the GeDI are lim-
ited to those expected to be harbored by upper division 
majors whose knowledge of genetic drift is developing 
but often conflated with other evolutionary mechanisms 
(see Price et al. 2014 for more information on misconcep-
tion delineation by expertise levels). For scoring, GeDI 
authors recommend that all items are given equal weight 
(e.g., 17/22 = 77%). To compensate for the high guess-
ing rate for dichotomous questions, GeDI developers 
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recommended: comparing raw scores before and after 
instruction, using higher than usual raw score cut-points 
to define success, or consideration of only the percent-
age correct above 50% (the score that could potentially 
be obtained by guessing alone) (Price et al. 2014). All of 
these scoring recommendations are grounded in Classi-
cal Test Theory (see below).

Instrument evaluation using Item Response Theory
The frameworks for developing and evaluating assess-
ment instruments have changed substantially over the 
past few decades, and faculty at all educational levels 
need to be familiar with these changes in order to under-
stand the strengths and weaknesses of the measures 
that are derived from evolution education instruments 
(American Educational Research Association, Ameri-
can Psychological Association, and National Council on 
Measurement in Education (AERA, APA, NCME) 2014). 
Classical Test Theory (CTT) and Item Response Theory 
(IRT) are two conceptual and empirical frameworks 
commonly used for analyzing and evaluating measure-
ment instruments.

IRT and Rasch frameworks address many inher-
ent limitations of CTT (Bond and Fox 2007; Nehm and 
Schonfeld 2008; Boone et al. 2014). A broad advantage is 
the existence of diverse IRT and Rasch models suitable 
for different types of data (unidimensional, multidimen-
sional, dichotomous, polytomous, large and small data 
sets, and multi-matrix sampling), permitting analyses to 
be more closely matched to study type. IRT/Rasch analy-
ses report ratio-scaled scores for both persons and items 
on the same Logit scale, facilitating more accurate score 
inferences and comparisons between persons, items, 
or persons and items. A variety of fit statistics are also 
calculated to allow more thorough evaluation of item, 
person, and instrument function. Some of the salient 
features of IRT/Rasch that are relevant to our analysis of 
the GeDI instrument are reviewed below. Readers inter-
ested in a more technical treatment of these frameworks 
are encouraged to consult Bond and Fox (2007), Boone 
et al. (2014), and de Ayala (2009). Overall, IRT and Rasch 
frameworks afford a robust psychometric evaluation and 
inferential potential for educational measurement instru-
ments. Our analysis of the GeDI provides an example 

of how Rasch analysis can offer greater insights into the 
measurement capabilities and limitations of measure-
ment instruments.

Item Response Theory in educational measurement
Item Response Theory is a model-based psychometric 
approach centered on the premise that responses to an 
item set measuring a single trait are functions of both the 
test taker’s attributes (i.e., ability level on the trait) and 
the item’s attributes (i.e., difficulty). IRT posits a predict-
able response pattern whereby easier items are correctly 
answered more frequently than difficult items, and more 
able persons correctly answer more items, including the 
more difficult items. Parameters of person ability and 
item difficulty are estimated from a set of iterative com-
parisons of response patterns according to this prem-
ise. A variety of IRT models exist, varying in the type of 
instrument responses they accommodate (e.g., dichoto-
mous or polytomous) and in the number of parameters 
considered (e.g., the 1 parameter logistic, or 1PL, model 
considers the parameter of item difficulty, while the two 
parameter logistic model, 2PL, considers both difficulty 
and discrimination; see Bond and Fox 2007 for more 
information).

Rasch methodologies share much in common with the 
IRT framework, and are often considered to be a form of 
IRT. The dichotomous Rasch model used in this study is 
mathematically equivalent to the 1PL IRT model. A key 
philosophical and practical distinction between Rasch 
and other IRT analyses is that Rasch considers only the 
first IRT parameter (item difficulty) and does not alter 
the model (e.g., add parameters) to fit the data. As such, 
Rasch affords characterization of persons and items 
in a manner that is more robust, with greater inferen-
tial potential, than Classical Test Theory or other IRT 
approaches (Bond and Fox 2007; Boone et al. 2014). Sev-
eral of Rasch’s advantages that are discussed in the fol-
lowing paragraphs stem from this distinction.

Ratio-scale logit scores for persons and items
The vast majority of evolution education instruments 
have been developed and evaluated using CTT as a guid-
ing framework. IRT/Rasch frameworks address many 
inherent limitations of CTT (Bond and Fox 2007; Nehm 

Table 2 GeDI scenarios and associated items

Scenario Items Example

1 1–8 Small subpopulation of land snails colonize a new island

2 9–11 Dung beetles geographically isolated by canals

3 12–18 Biologist randomly selects fruit flies to breed in captive populations

4 19–22 Nearsighted island population of humans before and after a devastating storm
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and Schonfeld 2008; Boone et  al. 2014). One major 
advantage of IRT and Rasch methods is that they convert 
raw test scores into linear, ratio-scaled scores. This fea-
ture is essential for addressing unequal difficulty inter-
vals between raw test scores. Consider, for example, the 
ability difference between two low performing individu-
als whose raw scores differ by one point (e.g., scores of 
70 and 71 out of 100) and the ability difference between 
two high performing individuals whose scores also differ 
by one point (e.g., scores of 99 and 100). It is unlikely that 
the items that separated the two high-achieving students 
have the same difficulty value as the items that separated 
the low achieving students, and yet for both pairs the dif-
ference between raw scores is equal (1 point). Because 
raw scores are calculated without consideration of item 
difficulty, they do not adequately represent the true abil-
ity difference between individuals. Put another way, the 
quantity “one point” does not seem to measure the same 
attribute in these four students; the true difference in 
ability between the two high-achieving students would be 
much greater than the difference between the two lower-
scoring students. Rasch ratio-scale scores are calculated 
with consideration of item difficulty and thus remedy raw 
score inconsistencies. Conversion to linear data is also 
crucial to satisfy the assumptions of parametric statistical 
analyses commonly conducted using test scores. In sum, 
IRT/Rasch methods address a fundamental problem with 
CTT scores: non-ratio-scaled data.

Rasch scores (or “measures”) for persons and items 
are reported as logit units and derive from a probability-
based logarithmic equation that considers both item dif-
ficulty and person ability. Using the same logit scale to 
quantify both item difficulty and person ability facilitates 
comparison among items, persons, and items and per-
sons. It also affords analyses capable of determining the 
probability that a particular person could solve a particu-
lar item. In typical Rasch analyses, mean item difficulty 
and mean person ability are set at 0 logits. More difficult 
items (or higher achievers) are given higher scores, while 
easier items (or lower achievers) are given lower (more 
negative) scores. When logit values for person measure 
and item measure are equivalent, an individual has a 50% 
probability of correctly answering the item (Bond and 
Fox 2007, p. 38).

Instrument dimensionality
An important component of instrument evaluation is 
confirmation of the instrument’s dimensionality. Most 
instrument evaluation methods and parametric analy-
ses of data generated by instruments assume unidimen-
sionality, or that the instrument measures one (and only 
one) construct (Neumann et  al. 2011). Attempting to 
capture more than one construct at a time, or probing 

distinct facets of a single construct, can introduce mul-
tidimensionality. Multidimensionality presents complica-
tions when reporting an individual’s instrument scores 
as a single value (e.g., Which portions of the total score 
represent which construct?) and for analyses—includ-
ing Rasch—that inherently assume one construct is 
being measured. (Note that methodological extensions 
of Rasch do exist that can accommodate multidimen-
sionality) Thus, multidimensional instruments must 
either (1) be treated as multiple unidimensional instru-
ments, with scores reported and analyzed as such (along 
with corresponding validity evidence), or (2) be analyzed 
with advanced psychometric methodologies specific to 
multidimensionality.

Traditional CTT-aligned approaches to ascertaining 
dimensionality (e.g., confirmatory factor analysis and 
principal component analysis) can be problematic: these 
analyses typically require data to be normally distributed 
and conform to an equal interval scale, which, as has 
been mentioned, is most often not the case. In evaluat-
ing the degree to which an instrument is multidimen-
sional, principal components analysis of Rasch-scaled 
scores offers information on the response variance that 
can be attributed to the items (i.e., variance explained by 
the model; first contrast in Rasch-scaled principal com-
ponent analysis) and the degree to which response vari-
ance is unexplained (i.e., the second contrast, and so on). 
A second dimension is hypothesized to exist if the unex-
plained variance is larger than what would be expected 
to be due to random noise in the data (for details, see 
Raîche 2005). Variance beyond the random noise thresh-
old can be attributed to additional dimensions within the 
instrument, though other considerations such as con-
struct structure, variance in responses, and the purpose 
of measurement afford some degree of flexibility in this 
interpretation (Linacre 2017).

Wright maps
A display of all person and item measures for a unidi-
mensional construct on a shared logit scale (commonly 
known as a Wright map, e.g., Fig. 1) is another powerful 
and unique application of Rasch. This side-by-side com-
parison enables researchers to examine the alignment of 
test items to test taker “ability” and to identify possible 
measurement gaps (i.e. difficulty/ability ranges in which 
items are lacking). Items are represented by their respec-
tive number on the right side of the scale, while persons 
are represented by “X’s” on the left side of the scale. 
Given the probabilistic nature of the analysis, each per-
son has a 50% chance of correctly answering an item with 
an equivalent measure. In a well-designed instrument, 
question difficulty should be aligned with test-taker abil-
ity, with items present that are able to differentiate among 
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learners at all ability levels. Thus, instrument evaluation 
using a Wright map includes examining the match of 
the “spread” of test takers to the “spread” of test items. 
Items that are too easy appear below the lowest test tak-
ers (having been estimated to be correctly answered by 

everyone, these items likely add little value to the meas-
ures), while items that are too difficult appear above the 
highest test takers (these items may be too challenging 
for the sample). If all of the persons are plotted above the 
highest item or below the lowest item, then the items lack 
alignment with ability level. Multiple items aligned at the 
same difficulty levels on the Wright map, and testing the 
same concept or misconception, add little to measure-
ment and are candidates for elimination. Large clusters of 
persons at the same ability level indicate locations where 
additional items could be added to better separate their 
abilities. Overall, the Wright map is a useful visual tool 
for examining instrument properties and person-item 
relationships.

Item and person fit
Analyses of the degree to which the empirical data fit 
the statistical Rasch model are one approach for evalu-
ating the quality of the test items, the test instrument, 
and overall evidence in support of validity claims (Boone 
et al. 2014). Rasch analysis includes several parameters to 
examine model fit. Overall item fit and person fit scores 
describe how well the collective item set and collective 
person sample fit the Rasch model, respectively. These 
values provide insights into overall instrument func-
tion. Individual item and person fit statistics are useful 
for determining whether items and persons fit the Rasch 
model. Poor model fit reveals when items and persons 
behave unexpectedly (e.g., an item may be interpreted 
differently and elicit inconsistent responses, a person 
may guess, a high ability person may get some low diffi-
culty items wrong). Accordingly, poorly functioning indi-
vidual items or persons can be identified using these fit 
statistics.

In Rasch measurement, fit is expressed as weighted 
(“infit”) or unweighted (“outfit”) values for the mean 
square parameter (MNSQ), and calculation of fit is based 
on a Chi square test of how well the empirical data fit the 
Rasch model (Bond and Fox 2007, p. 238). For a stand-
ard multiple choice assessment, MNSQ values above 1.3 
are considered to be “underfitting”, indicating that the 
response pattern for that item is erratic. Values below 
0.7 are considered to be “overfitting”, indicating that the 
response pattern is overly predictable. Both overfit and 
underfit suggest that the item is not functioning prop-
erly (i.e., eliciting information consistent with test-taker 
ability). Cut off values of 0.7 and 1.3 are used for the 
MNSQ parameter to ensure an adequate match between 
the empirical data and the statistical model (Boone et al. 
2014; Bond and Fox 2007). Z-Standard (ZSTD) scores are 
transformed t test statistics that report the probability of 
MNSQ scores occurring by chance when the data fit the 
Rasch model (Linacre 2017). Ideal ZSTD scores range 

Fig. 1 Wright map derived from Rasch analysis of GeDI responses. 
The distribution of persons (on the left) and GeDI items (on the right) 
are illustrated on the same log interval (− 2 to 4) scale. Each # = 4 
persons
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from 0 to 2. However, as sample size increases, accumula-
tion of random responses tends to elevate ZSTD scores 
(Smith et  al. 2008). For this reason, and because ZSTD 
statistics are based on MNSQ statistics, ZSTD values 
are considered secondary to MNSQ scores. Depending 
upon measurement goals and sample sizes, ZSTD scores 
may be ignored if MNSQ values are acceptable (Linacre 
2017). With multiple indicators of fit that correspond to 
different causes of misfit as well as parameters to report 
the probability of fit statistics, Rasch and IRT provide a 
much more detailed characterization of item fit proper-
ties compared to CTT.

Item and person reliability
Further indicators of instrument quality include Rasch 
item and person (separation) reliability measures, which 
reflect internal consistency and can be interpreted anal-
ogously to Cronbach’s alpha in CTT (cf. Wright and 
Stone 1979). Together, acceptable item reliability and 
person reliability indicate that the item set functions to 
differentiate the measured trait into a number of ability 
levels sufficient for measurement goals in manner that 
can be replicated in comparable samples. Specifically, 
item reliability addresses whether the persons sampled 
demonstrated sufficiently diverse abilities to support the 
calculated item difficulty structure, while person reli-
ability addresses whether the item difficulty structure is 
sufficient to reliably produce person measures. Together 
these are again a more nuanced measurement of reliabil-
ity than CTT affords.

Item reliability values < 0.9 suggest that the participant 
sample is likely to be too small to confirm the apparent 
item-difficulty structure. Person reliability values < 0.8 
suggest that assessment items are insufficient to distin-
guish among test takers. This may also suggest that the 
Rasch person measure score (or how well each person 
performed based on the Rasch model) may not be a reli-
able reflection of person ability (Boone et al. 2014). These 
values are guidelines for a “general” instrument and sam-
ple, and should be interpreted according to specific char-
acteristics of an instrument including its format (e.g., 
number of items, number of response choices), and the 
stated goals of measurement (e.g., norm- or criterion-ref-
erenced) (Boone et al. 2014; Linacre 2017).

Missing data
A key benefit of IRT and Rasch modeling is the ability 
to readily accommodate “missing” data. Because person 
estimates are based on the probability a person will cor-
rectly respond to a given item of a particular difficulty, 
failure to answer a few items among many others whose 
difficulty is known does not significantly impact per-
son estimates; the model is able to predict how a person 

would likely have answered a skipped question based on 
responses to items of similar difficulty. Similarly, because 
item measures are estimated based on the probability 
that a person of a determined ability will select a correct 
answer for that item, item estimates are not impacted by 
the absence of a few individuals’ responses from among 
many responses of known ability. These properties ensure 
that Rasch person scores are item-independent and item 
scores are sample-independent, characteristics which 
afford researchers the widespread benefit of being able to 
confidently utilize partially completed student response 
sets. Accommodation of missing data is also essential 
for computer adaptive testing (Bond and Fox 2007) and 
multi-matrix studies in which participants are assigned 
only a subset of items from the total collection of ques-
tions (cf. Sirotnik and Wellington 1977; e.g., Schmie-
mann et al. 2017). Such designs allow testing of a wider 
variety of items while minimizing participant test fatigue. 
In sum, Rasch and IRT hold considerable potential for 
expanding the body of empirical evidence on instrument 
quality, yet remain broadly underutilized in science edu-
cation measurement.

Item order effects on student performance
An extensive body of work extending back to the 1950’s 
(e.g., MacNicol 1956; Mollenkopf 1950) has found that 
instrument scores may be influenced by interactions 
among (1) item position (that is, which questions stu-
dents encounter first, section, third, etc.) and item dif-
ficulty, (2) item format (multiple choice, constructed 
response; qualitative or quantitative), and (3) test type 
(aptitude or achievement) (reviewed in Federer et  al. 
2015; Leary & Dorans 1985). For example, working with 
the ACORNS instrument, Federer et al. (2015) found an 
interaction between item order and taxon familiarity on 
student performance measures. The GeDI contains sev-
eral separate scenarios with associated item suites that 
vary in task contexts (cf. Table 2) and item difficulty lev-
els (Price et  al. 2014). It is possible that these (or other 
unidentified) aspects of the items could influence student 
responses to subsequent items (cf. Federer et  al. 2015). 
Hence, investigation of whether scenario order impacts 
student performance is a worthwhile step towards under-
standing the measurement properties of the GeDI.

Generalizability of instrument scores
Evidence for generalization validity is important to sub-
stantiate claims that an instrument measures a trait in the 
same manner across different populations and admin-
istration contexts. Instruments are designed to meas-
ure a specific construct under specific circumstances, 
such as a particular educational level (e.g., undergradu-
ate biology majors, elementary students) under certain 
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administration conditions (e.g., unproctored comput-
erized testing, timed paper-and-pencil tests), and for 
particular purposes (e.g., formative evaluation of instruc-
tional interventions, employment screening). Explicit 
delineation of such contexts and evidence to support 
validity and reliability of inferences generated under 
these circumstances should accompany instruments 
(American Educational Research Association, Ameri-
can Psychological Association, and National Council on 
Measurement in Education (AERA, APA, NCME) 2014). 
Under alternative administration contexts (e.g., sam-
ple populations, testing conditions), items are subject 
to differing interpretations or stress factors which may 
bias responses. For instance, a question may be beyond 
the comprehension level of a group, may be scrutinized 
more stringently by those with greater subject expertise, 
or may contain terms whose meaning differs according to 
the cultural or regional background of a sample. Accord-
ingly, biased item responses compromise the validity of 
inferences about the latent trait (American Educational 
Research Association, American Psychological Associa-
tion, and National Council on Measurement in Educa-
tion (AERA, APA, NCME) 2014). When an instrument is 
used in a new context, evidence is needed to support the 
validity and reliability of inferences generated in the new 
context.

The GeDI is intended to measure upper division biol-
ogy majors’ conceptions of genetic drift across different 
institution types and in different courses. While devel-
opment and initial validation sampled a broad array of 
students from different biology courses and institution 
types throughout the Midwest and Central United States 
regions, samples from the Northeast were not included 
(Price et al. 2014). Given that regions of the United States 
vary widely in demographic composition, religion, and 
evolution acceptance, additional information from a 
Northeastern population would further substantiate 
claims about the utility of the GeDI across geographic 
regions.

Evidence used to support instrument quality
The GeDI has only been evaluated using Classical Test 
Theory methods despite many known limitations of 
using raw data to interpret item and instrument proper-
ties (as discussed above; Boone et al. 2014). A summary 
of the forms of evidence used to support validity infer-
ences for the GeDI are shown in Table  3. The present 
study expands upon prior validity and reliability work 
by (1) employing Rasch Modeling, which produces more 
accurate ratio-scaled scores and can contribute evidence 
to examine dimensionality, construct validity, internal 
structure validity, item properties, and reliability, (2) 

Table 3 Summary of validity and reliability evidence for the GeDI

a  Based on Campbell and Nehm (2013); Messick (1995); Nitko and Brookhart (2010)

Validity/reliability evidence type 
and  descriptiona

CTT framework (Price et al. 2014) Rasch framework (present study)

Construct validity
 Instrument appropriately represents the specified 

knowledge domain

Textbook analysis, expert survey, student inter-
views, review of student work and literature 
review for misconceptions

Rasch model fit, Rasch dimensionality analysis, 
item fit, person reliability

Substantive validity
 Participants use the thought processes that were 

anticipated for each item

Student interviews (None)

Internal structure validity
 Items capture a single construct

Cronbach’s alpha Rasch dimensionality test, person and item 
reliability

External structure validity:
 Scores are appropriately associated (positively or 

negatively) with an independent measure

(None) (None)

Generalization validity
 Score inferences hold true in different administra-

tive contexts

Five campuses over two geographic areas (South-
east/Midwest)

New population (Northeast)

Consequential validity
 Considers positive or negative consequences of 

score use

Not applicable Not applicable

Reliability
 Reproducibility of scores

Test–retest Item and person reliabilities

Item properties
 Individual item performance characteristics

Difficulty, discrimination Item measures, item fit statistics, Wright map

Item order effects
 Possible item interactions and associated 

sequence biases

(None) ANOVA of Rasch-scaled scores from forms 
rotating item-suite order
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examining item order effects, and (3) studying a par-
ticipant population from a new geographic region of the 
country (Table 3).

Methods
Item order
The GeDI features four scenarios, each followed by one to 
three question stems containing a number of associated 
agree-disagree statements (i.e., items; see Table  2). The 
GeDI’s scenarios differ in situational features (cf. Table 2) 
and difficulty, two factors which have been shown to 
demonstrate item-order effects in prior studies (reviewed 
in Federer et al. 2015). In order to determine whether the 
sequence of scenarios and related items within the GeDI 
instrument impacted student performance, four com-
plete forms of the GeDI were generated, which differed 
only in the presentation sequence of scenarios. A four-
by-four Latin square design was used to rotate scenario 
sequence among the test forms (see Table 4). Each of the 
four scenarios (and related items) constituted a block in 
the square; the original order of the scenarios and items 
(Price et al. 2014) was used to seed the Latin square, and 
the original order of the items within a block was main-
tained throughout all forms (see Table 4).

Sample and administration
The GeDI forms (Table 4) were administered online using 
a learning management system in the spring semester 
of an upper division (300-level) genetics class at a large, 
Northeastern Doctoral-granting university. This course 
was chosen because it aligns with the target population 
for GeDI use and is among the course types used in the 
development and initial validation studies of the GeDI 
(Price et  al. 2014). Students were randomly assigned 
to one of four experimental groups, each of which had 
access to only one of the four forms of the assessment 
(Table  4). Extra credit was offered as an incentive for 
participation. Students were allowed one attempt to 

complete the activity, with a generous 60-min time limit 
to allow a maximum of 2–3 min per response. While we 
did not collect data on exact completion time, it was less 
than 1  h. Random student identification numbers were 
assigned to anonymize response data. The assessment 
was open for a period of 1  week beginning in the 10th 
week of the semester, prior to which no instruction relat-
ing to genetic drift had occurred. Of the 480 students 
enrolled, 336 (70%) completed the assessment in the fol-
lowing distribution: n form 1 = 91, n form 2 = 78, n form 3 = 80 
and n form 4 = 87.

Data analysis
In order to empirically evaluate the validity and reliabil-
ity inferences derived from GeDI scores, Rasch modeling 
was performed using WINSTEPS v 3.68.2. Dimension-
ality was examined via a principal components analysis 
(PCA) of Rasch residuals. The overall fit of items and 
persons to the unidimensional Rasch model were exam-
ined by infit and outfit mean square (MNSQ) values and 
Z standard (ZSTD) values. A Wright map was generated 
to visualize item difficulty relative to test-taker ability, 
and individual item fit values were considered. Item reli-
ability was calculated to determine whether responses 
were varied enough to confirm the item difficulty struc-
ture, person reliability was calculated to determine 
whether the items differentiated among achievement 
levels sufficiently. To determine if item order impacted 
test performance, a one-way ANOVA was performed 
on Rasch-scaled scores for the four GeDI forms. 
Finally, total scores and item difficulty ranks were com-
pared across administrations in order to examine score 
generalizability.

Results
Dimensionality
Principal components analysis (PCA) of Rasch residuals 
was used to compare the amount of variance explained 
by items and persons in relation to unexplained vari-
ance (which might correspond to additional dimensions). 
For our sample, items explained 13.3% of the variance 
while 6.6% remained unexplained, and person measures 
explained approximately as much. With an approximate 
2:1 ratio of variance due to items versus unexplained var-
iance, a high loading for the first dimension was appar-
ent. High unexplained variance is common for samples 
demonstrating narrow ranges of ability (see Fig. 1). For an 
instrument with 22 items, an Eigenvalue greater than two 
would suggest additional dimensions (Linacre 2017). For 
our sample, the Eigenvalue was 1.8 in the first contrast. 
Thus, the analysis did not support additional dimensions 
for the GeDI.

Table 4 Design of GeDI forms

The presentation sequence of the four scenarios (and accompanying item suites 
that comprise the GeDI) was rotated among four equivalent test forms using 
to a Latin square design. A Latin square is an array of n rows and n columns, 
with each row and each column containing units 1 through n exactly once. By 
rotating experimental treatments in this manner, the researcher can generate 
data to determine whether an adjacent treatment (or, in this case, item suite 
placement) influences overall performance. For a description of scenarios and 
associated items see Table 2

Position 1 Position 2 Position 3 Position 4

GeDI form 1 sequence Scenario 1 Scenario 2 Scenario 3 Scenario 4

GeDI form 2 sequence Scenario 2 Scenario 3 Scenario 4 Scenario 1

GeDI form 3 sequence Scenario 3 Scenario 4 Scenario 1 Scenario 2

GeDI form 4 sequence Scenario 4 Scenario 1 Scenario 2 Scenario 3
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Overall model fit
Overall item fit and person fit values are measures of 
how well a dataset fits the Rasch model. Values outside 
of the acceptable range (MNSQ = 0.7–1.3 and Z standard 
values < 2.0) suggest that test takers were responding in a 
manner that was either overly predictable, very erratic, or 
inconsistent with their ability. Excellent overall person fit 
values (infit MNSQ = 1.0, ZSTD = 0.0; outfit MNSQ = 0. 
99, ZSTD = 0.0) and item fit values (infit MNSQ = 1.0, 
ZSTD = 0.0; outfit MNSQ = 0. 99, ZSTD = − 0.1) were 
apparent (Table  5) and indicated that the participant 
sample responses fit the Rasch model very well.

Individual item fit
Rasch infit and outfit MNSQ and ZSTD values were used 
to assess how well individual GeDI items aligned with the 
student population and with the Rasch model. Infit and 
outfit MNSQ values for all test items were within accept-
able ranges (Table  5) and are thus functioning to elicit 
responses consistent with test-taker ability. Five items (2, 
9, 16, 19, and 22) had infit and/or outfit ZSTD values out-
side of the acceptable range. According to Linacre (2017), 

misfitting ZSTD scores are very sensitive to sample size, 
and may be disregarded when samples are large (over 300 
observations) and MNSQ scores are acceptable. This is 
because ZSTD values reflect how perfectly data fit the 
Rasch model rather than how usefully data fit the model, 
and in large samples (over 300 observations), the accu-
mulation of rare individual atypical responses can inflate 
ZSTD scores without having a bearing on the usefulness 
of the data.

Wright map
A Wright map depicts item difficulty measures (on the 
right side) and person ability scores (on the left side) on 
the same logit scale (Fig.  1). This side-by-side compari-
son enables one to understand how well test-takers are 
performing relative to item difficulty, and how well items 
are functioning relative to test-taker ability. Item num-
bers are plotted on the right side of the map, while per-
sons are represented by the # symbols on the left side of 
the map. Mean item difficulty and mean person ability 
are set to zero, with the most difficult items and highest 
performers appearing toward the top of the map and the 
easiest items and lowest scorers appearing toward the 
bottom of the map. Typically, question difficulty should 
be well-matched with test-taker ability, with the presence 
of items that can differentiate among learners at all abil-
ity levels. A person has a fifty percent probability of cor-
rectly answering an item with an equivalent logit value.

The logit scores for test items and persons in Fig.  1 
demonstrate that the GeDI item difficulty is generally 
well matched to test-taker ability, with the exception of 
the top of the logit scale. About 12.5% of participants had 
logit scores above the most difficult item (item 8). Thus, 
the GeDI successfully differentiates most of this student 
population, but, from a strict perspective, requires addi-
tional (high difficulty) items to differentiate the highest 
scorers. Further, almost all test takers correctly answered 
item 1, indicating that it is “too easy” to differentiate stu-
dents’ knowledge levels. The Wright map also illustrates 
three instances of test items displaying equivalent dif-
ficulty levels. Items of redundant difficulty are not func-
tioning to discriminate among test-takers and may be 
candidates for removal in the interest of a removing unin-
formative items, unless such items are necessary for con-
tent validity, or some other aspect of construct validity. In 
this particular case (i.e., items 14 and 6, and items 10, 7, 
and 9), items with equivalent difficulty address different 
concepts or “misconceptions.” Items 12 and 17, however, 
address the same misconception: “Natural selection is 
always the most powerful mechanism of evolution, and it 
is the primary agent of evolutionary change” (Price et al. 
2014).

Table 5 GeDI Rasch fit properties

Italics values refer to higher than expected values

Infit
MNSQ

Infit
ZSTD

Outfit
MNSQ

Outfit
ZSTD

Item 1.00 0.0 0.99 0.0

Person 1.00 0.0 0.99 − 0.01

Item 1 1.09 1.28 1.11 0.94

Item 2 1.14 3.75 1.22 3.84

Item 3 0.96 − 0.86 0.92 − 1.06

Item 4 1.08 1.40 1.09 0.91

Item 5 0.93 − 1.68 0.89 − 1.94

Item 6 0.99 − 0.21 0.96 − 0.54

Item 7 1.02 0.45 1.07 0.91

Item 8 0.96 − 0.64 0.96 − 0.56

Item 9 0.92 − 2.04 0.88 − 1.67

Item 10 1.03 0.74 1.05 0.69

Item 11 1.02 0.41 1.03 0.43

Item 12 1.00 − 0.07 1.00 − 0.05

Item 13 1.00 0.13 0.98 − 0.35

Item 14 0.98 − 0.46 0.95 − 0.80

Item 15 0.99 − 0.12 0.96 − 0.43

Item 16 1.20 4.05 1.27 4.24

Item 17 0.99 − 0.20 1.00 − 0.04

Item 18 0.98 − 0.35 0.88 − 1.05

Item 19 0.93 − 2.12 0.88 − 2.25

Item 20 0.98 − 0.54 0.96 − 0.63

Item 21 0.96 − 0.79 0.92 − 0.89

Item 22 0.91 − 2.61 0.86 − 2.54
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Reliability
Rasch person and item reliabilities reflect internal con-
sistency reliability. Item reliability values < 0.9 suggest 
that the test-taker sample is not large enough to con-
firm the apparent item-difficulty structure. Person reli-
ability (separation) values < 0.8 suggest that the items are 
insufficient for precisely and reproducibly distinguishing 
among the apparent abilities of test takers. Such values 
may also suggest that the Rasch person measure score 
(or how well each person performed based on the Rasch 
ratio-score model) may not be a reliable reflection of per-
son ability (Linacre 2017).

The overall item reliability value for the GeDI was 
0.97. The overall person reliability was 0.62 (As a point 
of comparison, Cronbach’s alpha for this administration 
was 0.65.). The high Rasch item reliability value indicates 
that the student sample in this study is sufficient to sup-
port the item difficulty and item fit values. Low person 
reliability scores are commonly associated with a nar-
row range of test-taker ability or an instrument with few 
items or few options for each item (which consequently 
elicits less varied responses than an instrument with 
many items and many answer options). In both cases, 
lack of variance in responses translates to fewer incre-
ments among which to delineate test taker ability (Lina-
cre 2017). This interpretation seems appropriate given 
the moderate number of items in the GeDI, the dichot-
omous response options, the presence of three items of 
redundant difficulty on the Wright map, the instrument’s 
failure to distinguish among the top 12.5% (n = 42) of test 
takers in this administration, and the bulk of test takers 
clustered between -1 and 1 on the logit scale (Fig. 1).

Item order effects
Raw score group means for all four forms of the GeDI 
were very similar, ranging between 12.02 and 12.20 (SD 
3.30–3.98) out of a possible 22 (Table  6). A one-way 
ANOVA confirmed that there was no statistically sig-
nificant difference in Rasch-scaled scores for each of the 
four GeDI forms (F[3332] = 0.038, p = 0.990). This result 
indicates that the order of scenarios did not impact over-
all performance. Comparisons of mean item measures 
for the first, second, third, or fourth rotation position 
showed no apparent differences in item difficulty when 
controlling for the number of statistical tests (Fig.  2). 
Detailed information on item measures for all items and 
rotation positions is available in Additional file 1.

Comparisons with other undergraduate participant 
samples
Given that evolution acceptance, religion, and demo-
graphic variables differ across the United States, it 
is important to determine if instrument properties 

generalize. GeDI scores from our sample of undergradu-
ates from the Northeastern United States were nicely 
aligned with the scores obtained by Price et  al. (2014) 
from similar courses from other regions of the coun-
try (Table 6). In particular, no significant difference was 
found between raw scores from the 300-level genetics 
class in our sample (M = 12.35, SD = 3.59) and those of 
300-level genetics classes in the Midwest (M = 11.94, 
SD = 3.35; t(475) = 0.481, p = 0.631) or the Southeast 
(M = 12.35, SD = 3.29; t(652) = 0.890, p = 0.374). Similar-
ity in scores across institutions indicates that the GeDI 
is functioning to elicit similar responses in comparable 
populations across the country and may suggest general-
izability of score inferences (cf. Messick 1995). It should 
be noted that no Rasch-scaled scores are available from 
prior GeDI administrations so comparisons are limited to 
raw scores. Raw score similarity also provides limited evi-
dence that Rasch-based validity measures obtained with 
our population may generalize to the GeDI as a whole, 
though this should be confirmed in future studies.

To examine whether individual items functioned simi-
larly across administrations, item difficulty rank from 
our sample was compared to CTT-based item difficulty 
(P) rank from Price et  al. 2014 (Table  7). Overall, most 
items maintained a similar or only slightly shifted diffi-
culty order, though a few notable differences in item dif-
ficulty across administrations were found. Among items 
targeting key concepts, the hardest and easiest items 
maintained the same difficulty position and mid-level 
items showed only minor rearrangement. Item 3 (relat-
ing to a loss of variation associated with genetic drift), 
initially ranked as an easy item by Price et  al. (2014), 

Table 6 Comparison of  performance on  GeDI by  form, 
course, and region

All institutions were Doctoral-granting. Maximum number of correct items is 22

Raw scores were used for comparison as Rasch-scaled data were not available 
from prior studies
a Denotes present study
b Denotes data from Price et al. 2014

Course, region (number tested) Mean of items 
correct (SD)

300-level genetics, Northeast (N = 336)a 12.11 (3.59)

 Form 1 (n = 81)a 12.02 (3.30)

 Form 2 (n = 78)a 12.15 (3.61)

 Form 3 (n = 80)a 12.20 (3.98)

 Form 4 (n = 87)a 12.09 (3.54)

300-level genetics, Southeast (N = 318)b 12.35 (3.29)

300-level genetics, Midwest (N = 141)b 11.94 (3.35)

300-level cell biology, Northwest (N = 51)b 13.35 (3.64)

300-level evolution, Northwest (N = 91)b 14.47 (3.78)

400-level evolution, Midwest (N = 60)b 16.66 (3.44)
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ranked among the more difficult key concept items in 
our administration. Among items targeting misconcep-
tions, many items maintained a similar difficulty ranking, 
but items 14, 19 and 22 (all of which addressed “genetic 

drift is random mutation”) were notably more difficult 
in the present administration. Items 11 and 18 (address-
ing “genetic drift is gene flow”) were notably easier in the 
present administration. Overall, most of the GeDI ques-
tions maintained the general difficulty hierarchy across 
diverse samples, which may be used as evidence in sup-
port of generalization validity. Difficulty rank differences 
in items 3, 11, 14, 18, 19 and 22 should be investigated 
further.

Discussion
How well does the GeDI function when studied 
within the context of the Rasch model?
Rasch and IRT afford a more comprehensive and rigor-
ous evaluation of instrument quality compared to CTT 
approaches (Boone et  al. 2014). The present study has 
generated further evidence in support of the GeDI’s use 
as an instrument capable of generating valid and reliable 
inferences about upper-level undergraduates’ knowledge 
of genetic drift in American samples. The GeDI was 
found to be unidimensional, with item response pat-
terns consistent with Rasch model expectations. The 
difficulty levels of items on the GeDI were generally well-
calibrated for upper division students, with the exception 
of the highest scorers, for whom challenging items were 
lacking.

Rasch analysis is useful to help a test developer to 
improve test quality because it can provide informa-
tion on how items function individually and as a whole. 
While the GeDI overall functioned very well within the 

Fig. 2 Position effects on item difficulty. GeDI items appear on the X axis and mean item measures for each GeDI item are plotted on the Y axis. 
Symbols denote scenario position (1, 2, 3, or 4) in a counterbalanced rotation sequence of scenarios and accompanying item suites (see “Methods” 
section for description). Error bars represent two standard errors of measurement about each mean item measure. As an example, item 4 showed 
little variation in item measure regardless of presentation order, and was also easier overall than item 13. In contrast, item 13 showed a slightly larger 
variation in item measure by position. Overall, no substantial differences were found between item difficulty and item position when controlling for 
the number of tests

Table 7 GeDI item difficulty rank in  initial and  present 
administrations

Items listed from most challenging items (top) to least challenging items 
(bottom). Difficulty rank based on CTT difficulty (P) values for initial study and 
Rasch item measures for present study

Items addressing key concepts Items addressing 
misconceptions

Price et al. 
(2014)

Present study Price et al. 
(2014)

Present study

16 16 8 8

13 13 6 6

10 3 12 14

4 10 17 12

15 15 5 17

3 4 14 5

1 1 2 2

11 19

18 22

20 20

9 9

7 7

19 11

22 21

21 18
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IRT framework and Rasch modeling, we offer a few rec-
ommendations that may further improve the quality of 
measurement from a psychometric perspective. Item 1 
was not difficult enough to differentiate students in this 
sample. Price et al. (2014) CTT analysis produced simi-
lar findings for item 1, however, they retained this item to 
satisfy validation criteria for earlier GeDI drafts. Future 
versions might revise, replace, or remove item 1. Fur-
ther investigation is also needed to determine whether 
items 12 and 17, which test the same misconception at 
the same difficulty level, should both be retained in their 
present form or perhaps removed or revised. From an 
empirical perspective, inclusion of additional high-diffi-
culty items or perhaps adjustment of a few current items 
would be beneficial to target the highest-ability test-tak-
ers and would likely improve person reliability scores. 
Of course, any decision about test design must balance 
consideration of both empirical properties and theoreti-
cal concerns such as construct representation, so adjust-
ment of items to improve psychometric properties is only 
appropriate if it continues to satisfy content validity crite-
ria. Developers specified that the GeDI targets what they 
refer to as “stage 2” (mid-level) misconceptions, wherein 
drift is conflated with other evolutionary mechanisms. 
The true/false format of the GeDI precluded assess-
ment of more nuanced “stage 3” (advanced-knowledge 
level) misconceptions, characterized by inappropriate 
constraints on the situations in which drift may occur. 
Further exploration is necessary to determine whether 
the GeDI might be modified to better measure the 
small group of high performers or whether the observed 
response pattern indeed represents the successful mas-
tery of the upper bounds of the intended construct. As is 
always the case, any modifications of the existing instru-
ment would require additional validation studies (cf. 
Table 3). Beyond these concerns about item difficulty, all 
items functioned appropriately in all other aspects of the 
analysis, supporting many of the claims put forth by Price 
et al. (2014).

Does the presentation order of instrument scenarios 
(and associated item suites) impact measures of student 
understanding?
The GeDI features four scenarios differing in taxonomic 
context and item difficulty, two factors which have been 
associated with item position effects in studies with other 
instruments (cf. Federer et  al. 2015). Rearranging the 
order of GeDI scenarios and associated item suites had 
no significant impact on test scores, thus each scenario 
is functioning independently to assess student knowledge 
and does not appear to be impacting responses to subse-
quent items. Almost no other concept inventories in biol-
ogy education have been tested for order effects.

Does the GeDI measure student knowledge in a manner 
that is generalizable across geographic regions 
of the United States?
The ability of the GeDI to generate comparable scores 
and fairly similar item difficulty rank patterns among aca-
demically similar students from diverse institutions from 
different geographic regions could be used as a source 
of evidence in support of claims of generalization valid-
ity (American Educational Research Association, Ameri-
can Psychological Association, and National Council on 
Measurement in Education (AERA, APA, NCME) 2014; 
Messick 1995). The addition of evidence from a North-
east population is particularly important because evolu-
tion acceptance and associated factors vary widely across 
different US geographic regions (which differ in reli-
gion and political party affiliations; see www.pewre searc 
h.org).

Genetic drift, natural selection, and their interrelationships
Empirical studies on teaching, learning, and assessing 
non-adaptive contributors to evolution have been scarce 
in a vast body of evolution education research dominated 
by studies on natural selection (Andrews et  al. 2012; 
Beggrow and Nehm 2012; Price and Perez 2016). How 
students conceptualize genetic drift and how genetic drift 
fits into the broader conceptual ecology of evolutionary 
thought are two areas that have only recently begun to be 
explored. Current research indicates that student think-
ing about genetic drift and understanding of genetic drift 
are both typically secondary to-and independent of—
understanding of adaptive evolutionary change (Beggrow 
and Nehm 2012; Andrews et al. 2012). Students appear to 
conceptualize non-adaptive mechanisms as alternatives 
to natural selection rather than co-occurring processes 
(Beggrow and Nehm 2012). When openly prompted to 
describe mechanisms for evolutionary change, students 
rarely suggest genetic drift (Beggrow and Nehm 2012), 
and, when specifically prompted to write about drift, 
many students still struggle to identify or explain drift 
(Andrews et al. 2012). Studying these responses, Andrews 
et al. (2012) developed a hypothetical framework describ-
ing how genetic drift conceptual development might 
progress: They suggest students may shift from (1) naive 
and limited conceptions of evolution and genetics to (2) 
a state where students are aware of various evolution-
ary processes (e.g., genetic drift) but still unclear on the 
differences between them, to (3) a state where students 
may distinguish between different evolutionary processes 
(e.g., genetic drift) but the new knowledge is still marked 
with inaccuracies specific to each process. Later, Price 
et al. (2016) noted that students developing expertise may 
exhibit elements of stage 2 and stage 3 conceptions simul-
taneously. Specifically, students with mid-level expertise 

http://www.pewresearch.org
http://www.pewresearch.org
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in genetic drift often confuse drift with scientific or naive 
ideas about natural selection or other evolutionary events 
such as bottlenecks/population boundaries, random 
mutation, migration/gene flow, or speciation in general 
(Andrews et al. 2012; Beggrow and Nehm 2012). In con-
trast, students with more advanced ideas about drift tend 
to place inaccurate constraints on the situations under 
which drift occurs (Andrews et al. 2012).

The development of the GeDI to target stage 2 (mid-
level) misconceptions about genetic drift is an important 
addition to the body of evolution measurement tools 
because it both gauges understanding of a previously 
neglected evolutionary mechanism and holds potential 
to capture some simultaneous reasoning about natural 
selection (as it relates to drift). Given the incoherence of 
naive student thought about evolution (inappropriately 
both conflating and failing to recognize simultaneous 
adaptive and non-adaptive processes), attention toward 
developing instruments that can simultaneously capture 
thought on adaptive and nonadaptive mechanisms is war-
ranted. Few instruments are capable of simultaneously 
eliciting thought about natural selection and genetic 
drift, and none were designed with the intent to robustly 
measure knowledge of both processes (Table  1). More 
fully capturing the array of student thought about diverse 
evolutionary mechanisms, including how thoughts on 
diverse mechanisms intersect, will better equip educa-
tors to develop appropriate instructional strategies and 
develop curricula.

Our work has provided evidence in support of validity 
inferences for the GeDI using contemporary instrument 
evaluation methods, and identified a few areas that would 
improve measurement quality. These findings are signifi-
cant given the very limited set of assessment tools avail-
able for exploring student understanding of non-adaptive 
processes.

Limitations and further research
A limitation to our analysis of the effects of item position 
on student performance was that our sample size for each 
test form was limited (n = 78–87); larger samples would 
afford more robust conclusions about possible item order 
effects (Linacre 1994). Specifically, more replicates gener-
ate more precise and stable item measures and increased 
statistical power to reduce the chance of a type II error. 
Further, we did not investigate whether possible item 
order effects might exist within question suites sharing 
a common scenario; our primary concern was whether 
scenario presentation order impacted responses to sub-
sequent scenarios.

Although our study adds additional evidence in sup-
port of the validity and reliability of the inferences gen-
erated by GeDI scores, further work in line with the 

measurement Standards is needed (American Educa-
tional Research Association, American Psychological 
Association, and National Council on Measurement in 
Education (AERA, APA, NCME) 2014; Messick 1995). 
For instance, although surface feature effects have been 
well-documented in evolution assessment (e.g., Federer 
et al. 2016; Nehm et al. 2012; Nehm and Ha 2011; Nehm 
2018; Opfer et al. 2012), such effects have yet to be exam-
ined for the GeDI. Future work might also investigate 
how the GeDI functions when data are disaggregated 
by gender, ethnicity, or other demographic factors (cf. 
Federer, Nehm and Pearl 2016; Schmiemann et al. 2017). 
Additionally, because all of the GeDI’s items offer dichot-
omous answer choices, the impact of guessing bears 
more significantly on inferences about understanding 
than on a traditional multiple choice instrument. Thus, 
an exploration of the extent to which guessing impacts 
inferences generated by the GeDI would be a worth-
while step. Such an investigation might consider how 
the instrument functions if item responses were to be 
moderated by a paired question tier to indicate student 
confidence in their responses (cf. Romine, Schaffer and 
Barrow 2015) or examined for guessing using Rasch or 
IRT (e.g., Andrich, Marais and Humphry 2012; Boone 
et al. 2014; Gershon 1992; Linacre 2017). Overall, while 
the GeDI now stands among the more robustly evaluated 
evolution instruments, additional work remains to com-
prehensively characterize the validity and reliability of 
inferences generated by this (and many other) evolution 
education instrument(s). Attention should also be given 
to whether the array of measurement instruments avail-
able can adequately gauge scientific and naive ideas about 
adaptive and nonadaptive evolution.

Conclusions
Validity evidence for the vast majority of instruments in 
evolution education is based on CTT, and most biology 
education instruments are supported with only one form 
of validity evidence (i.e., content validity) (e.g., Campbell 
and Nehm 2013). The evolution education research com-
munity must place greater emphasis on the analysis of 
ratio-scaled data and expand its efforts to include stud-
ies of a more diverse array of forms of validity evidence 
to support the inferences derived from assessment scores 
(cf. American Educational Research Association, Ameri-
can Psychological Association, and National Council 
on Measurement in Education (AERA, APA, NCME) 
2014). The present study provides further evidence that 
the inferences derived from the GeDI are valid indica-
tors of student understanding while identifying areas of 
improvement. The methodological approach we intro-
duced provides a template for future studies of other 
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evolution instruments that were validated using CTT 
methods.
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